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Fig. 1. Three applications of our framework to light transport simulation. We reformulate each application as a problem of combining a continuum of sampling
techniques and leverage our continuous MIS (CMIS) formulation to derive an efficient weighting scheme. Based on this scheme, our practical stochastic
MIS (SMIS) estimator outperforms existing state-of-the-art methods. For each image we report error in SMAPE units (see Section 4.4).

Multiple importance sampling (MIS) is a provably good way to combine
a finite set of sampling techniques to reduce variance in Monte Carlo in-
tegral estimation. However, there exist integration problems for which a
continuum of sampling techniques is available. To handle such cases we
establish a continuous MIS (CMIS) formulation as a generalization of MIS to
uncountably infinite sets of techniques. Our formulation is equipped with
a base estimator that is coupled with a provably optimal balance heuristic
and a practical stochastic MIS (SMIS) estimator that makes CMIS accessible
to a broad range of problems. To illustrate the effectiveness and utility of
our framework, we apply it to three different light transport applications,
showing improved performance over the prior state-of-the-art techniques.
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1 INTRODUCTION
Multiple importance sampling [Veach and Guibas 1995] (MIS) pro-
vides a framework for combining a set of sampling techniques in
Monte Carlo integration. This combination is done by weighting the
contribution of each sample produced by each sampling technique
according to some heuristic.

MIS can be directly applied to problems where the set of sampling
techniques is countable. However, there are certain problems where
an uncountably infinite number (i.e., a continuum) of techniques
arises naturally. A generalization ofMIS is needed for these problems
as the classical formulation does not consider such cases.
We formally establish this continuous generalization of MIS,

which we call continuous MIS (CMIS). Based on our formulation, we
devise a CMIS estimator that combines a continuum of sampling
techniques using a provably optimal balance heuristic. Since this
estimator is not always practical, we propose an approximation
to it—our stochastic MIS (SMIS) estimator—which is unbiased and
extends classical MIS to stochastic technique selection.

To demonstrate the utility of our framework, we apply it to three
applications in light transport simulation shown in Fig. 1. In path
space filtering [Keller et al. 2014], CMIS allows us to reformulate
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the problem as an MIS problem and to improve its robustness. In
spectral rendering [Wilkie et al. 2014], CMIS helps reduce color
noise by combining the contributions of a set of importance-sampled
wavelengths. In volume rendering with photon planes [Deng et al.
2019], CMIS refines the weighting functions by forgoing analytical
integration.
In summary, our main contributions are:
• an extension of MIS to a continuum of sampling techniques,
equipped with a an optimal balance heuristic;

• a practical estimator approximating that optimal combination;
• three applications in light transport simulation where our esti-
mators outperforms existing state-of-the-art techniques.

2 BACKGROUND AND RELATED WORK
Consider the definite integral 𝐼 of a function 𝑓 : X → R over some
domain X and the 𝑛-sample Monte Carlo (MC) estimator ⟨𝐼 ⟩𝑛 for it:

𝐼 =

∫
X
𝑓 (𝑥) d𝑥, ⟨𝐼 ⟩𝑛 =

1
𝑛

𝑛∑
𝑖=1

𝑓 (𝑥𝑖 )
𝑝 (𝑥𝑖 )

, (1)

where d𝑥 denotes an appropriate differential measure on X. The
variance of ⟨𝐼 ⟩𝑛 generally becomes small when the sampling proba-
bility density function (PDF) 𝑝 (𝑥) is approximately proportional to
the integrand 𝑓 (𝑥). Finding a single PDF that closely approximates
𝑓 , however, is often difficult in practice.
Veach and Guibas [1995] proposed MIS as a means to combine

several estimators with different PDFs 𝑝𝑡 (for 𝑡 = 1, . . . ,𝑇 ), where
each 𝑝𝑡 potentially approximates a different feature of the integrand
𝑓 . We refer to this method as discrete MIS (DMIS) to emphasize that
it considers a countable set of techniques.
The two DMIS estimators proposed by Veach and Guibas can

be derived by introducing a set of 𝑇 functions 𝑤𝑡 (𝑥) satisfying∑𝑇
𝑡=1𝑤𝑡 (𝑥)=1 and partitioning the integral 𝐼 into a sum:

𝐼 =

∫
X

𝑇∑
𝑡=1

𝑤𝑡 (𝑥)

=1

𝑓 (𝑥) d𝑥 =

𝑇∑
𝑡=1

∫
X
𝑤𝑡 (𝑥) 𝑓 (𝑥) d𝑥

𝐼𝑡

=

𝑇∑
𝑡=1

𝐼𝑡 . (2)

The one-sample DMIS estimator then estimates this sum by choosing
one integral 𝐼𝑡 , with probability 𝑃𝑡 , and estimating it by drawing a
single sample 𝑥 from the PDF 𝑝𝑡 :

⟨𝐼 ⟩DMIS =
⟨𝐼𝑡 ⟩1
P𝑡

=
𝑤𝑡 (𝑥) 𝑓 (𝑥)

P𝑡𝑝𝑡 (𝑥)
. (3)

The multi-sample DMIS estimator takes 𝑛 samples in total, explicitly
estimating each integral 𝐼𝑡 using 𝑛𝑡 = P𝑡𝑛 samples 𝑥𝑡,𝑖 from 𝑝𝑡 :

⟨𝐼 ⟩MDMIS =

𝑇∑
𝑡=1

⟨𝐼𝑡 ⟩𝑛𝑡 =

𝑇∑
𝑡=1

1
𝑛𝑡

𝑛𝑡∑
𝑖=1

𝑤𝑡 (𝑥𝑡,𝑖 ) 𝑓 (𝑥𝑡,𝑖 )
𝑝𝑡 (𝑥𝑡,𝑖 )

. (4)

The weighting functions𝑤𝑡 can be arbitrarily chosen as long as they
satisfy

∑𝑇
𝑡=1𝑤𝑡 (𝑥)=1 whenever 𝑓 (𝑥)≠0 and𝑤𝑡 (𝑥) = 0 whenever

𝑝𝑡 (𝑥) = 0 [Veach 1997]. The DMIS balance heuristic

𝑤̂𝑡 (𝑥) =
P𝑡𝑝𝑡 (𝑥)∑𝑇

𝑡 ′=1 P𝑡 ′𝑝𝑡 ′ (𝑥)
(5)

is a provably good choice, and Veach and Guibas [1995] showed
that it minimizes the variance of the one-sample estimator (3).

DMIS provides a general framework for combining estimators.
However, its generality leaves room for improvement when ap-
plied to certain problems or when additional information about
the integrand and estimators is known. Considerable research has
focused on optimizing the sample allocation among techniques [Pa-
jot et al. 2011; He and Tang 2014; Havran and Sbert 2014; Sbert
et al. 2016; Sbert and Havran 2017; Sbert et al. 2018]. Effort has
also gone into improving the weighting heuristics; Georgiev et al.
[2012], Popov et al. [2015], and Sbert et al. [2018] proposed schemes
that take advantage of domain-specific auxiliary information. The
method of Grittmann et al. [2019] augments the balance heuristic
with variance estimates, and Karlík et al. [2019] instead proposed
to optimize the sampling densities for balance-heuristic combina-
tion. Kondapaneni et al. [2019] derived the truly optimal weighting
function for the multi-sample estimator (4) by allowing weights
to be negative. Elvira et al. [2015] investigated variants of DMIS
with stochastic technique selection, similarly to our stochastic MIS
estimator (Section 3.2). Built upon DMIS, all these prior works are
limited to handling countable sets of techniques.
More closely related to our work, Deng et al. [2019] have con-

sidered a continuum of photon-plane orientations for computing
single scattering in participating media. They proposed an analyti-
cal weighting scheme over this continuum to reduce variance and
ameliorate the effect of singularities. We formalize this basic idea by
introducing a general framework for combining uncountable sets of
sampling techniques. We also show how other rendering problems
can benefit from being interpreted as such combinations.

3 CONTINUOUS MULTIPLE IMPORTANCE SAMPLING
To handle uncountable sets of sampling techniques, we devise an
extension of DMIS that we call continuous MIS. We first establish
our formulation by extending the dimensionality of the integration
problem. We then derive a CMIS estimator as an ordinary MC esti-
mator for that extended integral, along with a continuous balance
heuristic with provable optimality similar to that of DMIS. We also
show how DMIS can be derived from our continuous formulation.
Lastly, we propose a practical unbiased estimator, based on stochas-
tic technique selection, that makes CMIS accessible to a broad range
of integral estimation problems.

3.1 CMIS formulation
We begin by denoting T a space (of arbitrary dimension) that
permits sampling according to a certain PDF. We call T the tech-
nique space and its elements 𝑡 each identify a sampling technique.
We also introduce the notion of a continuous weighting function
𝑤 : T × X → R with the property

∫
T 𝑤 (𝑡, 𝑥) d𝑡 = 1, where d𝑡 is

an appropriate differential measure on T . With this definition, we
extend the dimension of the integral 𝐼 in a way similar to Eq. (2),
using Fubini’s theorem:

𝐼 =

∫
X

∫
T
𝑤 (𝑡, 𝑥) d𝑡

=1

𝑓 (𝑥) d𝑥 =

∫
T

∫
X
𝑤 (𝑡, 𝑥) 𝑓 (𝑥) d𝑥d𝑡 . (6)

Note that in this formulation the weight function integrates to one,
as opposed to summing to one in the DMIS formulation (2).

ACM Trans. Graph., Vol. 39, No. 4, Article 136. Publication date: July 2020.



Continuous Multiple Importance Sampling • 136:3

CMIS estimator. Our continuous MIS (CMIS) estimator arises as
an ordinary one-sample estimator for the extended integral (6):

⟨𝐼 ⟩CMIS =
𝑤 (𝑡, 𝑥) 𝑓 (𝑥)

𝑝 (𝑡, 𝑥) =
𝑤 (𝑡, 𝑥) 𝑓 (𝑥)
𝑝 (𝑡)𝑝 (𝑥 |𝑡) . (7)

Here, 𝑡 and 𝑥 are continuous random variables distributed according
to a joint PDF 𝑝 (𝑡, 𝑥) which factorizes into 𝑝 (𝑡)𝑝 (𝑥 |𝑡) when the
sampling of the integration variable𝑥 depends on 𝑡 . The estimator (7)
bears similarity to the one-sample DMIS estimator (3). The term 𝑝 (𝑡)
is now the density (rather than unitless probability) for choosing
technique 𝑡 , and 𝑝 (𝑥 |𝑡) is the technique’s (conditional) PDF. For the
estimator to be unbiased, the weighting function𝑤 must satisfy

(𝐶1)
∫
T
𝑤 (𝑡, 𝑥) d𝑡 = 1 whenever 𝑓 (𝑥) ≠ 0, and (8a)

(𝐶2) 𝑤 (𝑡, 𝑥) = 0 whenever 𝑝 (𝑡, 𝑥) = 0. (8b)

Analogously to DMIS, these two conditions imply that at any point
𝑥 where 𝑓 (𝑥) ≠ 0, there is a 𝑡 for which 𝑝 (𝑡, 𝑥) = 𝑝 (𝑡)𝑝 (𝑥 |𝑡) > 0.

CMIS balance heuristic. Subject to the conditions in Eq. (8), the
weighing function 𝑤 can be arbitrarily chosen in our CMIS esti-
mator (7). Different choices will lead to different variance of the
estimator. A simple uniform weight𝑤u (𝑡, 𝑥) = 1/

∫
T d𝑡 , however, is

unlikely to result in a good technique combination. We ideally want
to choose a𝑤 that minimizes the variance of the CMIS estimator (7).
Appendix A derives this variance-optimal weighting function:

𝑤̄ (𝑡, 𝑥) = 𝑝 (𝑡)𝑝 (𝑥 |𝑡)∫
T 𝑝 (𝑡 ′)𝑝 (𝑥 |𝑡 ′) d𝑡 ′

=
𝑝 (𝑡, 𝑥)∫

T 𝑝 (𝑡 ′, 𝑥) d𝑡 ′
=
𝑝 (𝑡, 𝑥)
𝑝 (𝑥) . (9)

This weighting function can be naturally interpreted as the contin-
uous counterpart to the classical DMIS balance heuristic (5); that
function is also normalized over all available techniques and mini-
mizes the variance of the one-sample DMIS estimator (3).
On the right-hand side of Eq. (9), 𝑝 (𝑥) =

∫
T 𝑝 (𝑡 ′, 𝑥) d𝑡 ′ is the

marginal PDF of 𝑥 . Using the optimal 𝑤̄ in Eq. (7) thus corresponds
to an ordinary MC estimator for Eq. (1) that samples from this PDF:

⟨𝐼 ⟩CMIS =
𝑤̄ (𝑡, 𝑥) 𝑓 (𝑥)

𝑝 (𝑡, 𝑥) =
���𝑝 (𝑡, 𝑥) 𝑓 (𝑥)
𝑝 (𝑥)���𝑝 (𝑡, 𝑥) =

𝑓 (𝑥)
𝑝 (𝑥) . (10)

Using the DMIS balance heuristic (5) similarly corresponds to an
ordinary MC estimator for Eq. (1), which samples from a weighted
sum of distributions [Veach 1997]. In the continuous case of CMIS,
the summation becomes integration, and the resulting distribution
becomes a marginal rather than a weighted sum.

Discussion. Note that simply letting the number of techniques 𝑇
in DMIS grow infinitely does not yield CMIS in the limit. Deng et al.
[2019] took this approach in an attempt to support MIS over a con-
tinuous space of photon-plane orientations. However, even when
𝑇 → ∞, the number of sampling techniques remains countably infi-
nite with a cardinality of ℵ0 [Enderton 1977]; this, in fact, is readily
supported by DMIS via Eq. (2). Our CMIS formulation instead explic-
itly considers a continuous space T representing an uncountably
infinite set of techniques with a cardinality of ℵ1 > ℵ0. Such a con-
tinuous formulation requires fundamental changes in the definition
of the weighting function and the use of the probability density
of choosing techniques. Additionally, our formulation allows T to
have arbitrary dimension, which we will leverage in Sections 4 to 6.

Going in the opposite direction (i.e., reducing CMIS to a countable
set of techniques) is comparatively straightforward. One way is to
directly discretize the space T by selecting a set of techniques,
turning the CMIS integral (6) into the DMIS sum (2) which can then
be estimated via Eqs. (3) and (4). Another option is to make the joint
PDF 𝑝 (𝑡, 𝑥) piecewise constant w.r.t. the identifier 𝑡 . Estimation can
then be done via the CMIS estimator (7), or by again reducing Eq. (6)
to Eq. (2) by leveraging the effective partitioning of T into subspaces
T𝑖 , each with an associated technique 𝑡𝑖 with PDF 𝑝𝑖 (𝑥) = 𝑝 (𝑥 |𝑡𝑖 ).
The integral over T in Eq. (6) can then be broken up into a sum of
integrals over T𝑖 , and denoting𝑤𝑖 (𝑥) =

∫
T𝑖 𝑤 (𝑡, 𝑥) d𝑡 yields Eq. (2).

Finally, a direct multi-sample counterpart to Eq. (4) for CMIS
would not be practical as it would require drawing an uncountably
infinite total number of samples, evenwith one sample per technique.
As an alternative, the CMIS estimator (7) could be generalized to
the form in Eq. (1), averaging over 𝑛(𝑡) samples for each technique
𝑡 . For clarity, we restrict our discussion to the 1-sample case.

3.2 SMIS formulation
Evaluating the balance-heuristic CMIS estimator (10) requires evalu-
ating the marginal PDF integral 𝑝 (𝑥) in its denominator. While this
integral is sometimes available in closed form, often it is not. One
approach is to construct an unbiased estimator for 1/𝑝 (𝑥) [Booth
2007] which appears as a multiplicative term in the estimator. How-
ever, this method requires special care when 𝑝 (𝑥) > 1, which is
generally the case as 𝑝 (𝑥) is a probability density. We take a simpler
approach to approximating the CMIS estimator.

SMIS estimator. We achieve unbiased estimation by starting from
a balance-heuristic CMIS estimator (10) that averages over 𝑛 inde-
pendent sample pairs (𝑡1, 𝑥1), . . ., (𝑡𝑛, 𝑥𝑛). We then reuse the samples
𝑡𝑖 ∼𝑝 (𝑡𝑖 ) to estimate the marginal𝑝 (𝑥) in the balance heuristic 𝑤̄ (9):

1
𝑛

𝑛∑
𝑖=1

𝑝 (𝑡𝑖 , 𝑥𝑖 )∫
T 𝑝 (𝑡, 𝑥𝑖 )d𝑡

· 𝑓 (𝑥𝑖 )
𝑝 (𝑡𝑖 , 𝑥𝑖 )

𝑛-sample CMIS

≈ 1
𝑛

𝑛∑
𝑖=1

𝑝 (𝑡𝑖 , 𝑥𝑖 )
1
𝑛

∑𝑛
𝑗=1

𝑝 (𝑡 𝑗 ,𝑥𝑖 )
𝑝 (𝑡 𝑗 )

· 𝑓 (𝑥𝑖 )
𝑝 (𝑡𝑖 , 𝑥𝑖 )

𝑛-sample SMIS approximation

. (11)

Using 𝑝 (𝑡𝑖 , 𝑥𝑖 ) = 𝑝 (𝑡𝑖 )𝑝 (𝑥𝑖 |𝑡𝑖 ), the approximation on the right-hand
side simplifies to

⟨𝐼 ⟩SMIS =

𝑛∑
𝑖=1

¤𝑤 (𝑡𝑖 , 𝑥𝑖 ) 𝑓 (𝑥𝑖 )
𝑝 (𝑥𝑖 |𝑡𝑖 )

=

𝑛∑
𝑖=1

𝑓 (𝑥𝑖 )∑𝑛
𝑗=1 𝑝 (𝑥𝑖 |𝑡 𝑗 )

, (12)

where ¤𝑤 (𝑡𝑖 , 𝑥) = 𝑝 (𝑥 |𝑡𝑖 )∑𝑛
𝑗=1 𝑝 (𝑥 |𝑡 𝑗 )

. Note that the approximation in Eq. (11)
yields a biased estimator for the CMIS estimator on the left, due to
Jensen’s [1906] inequality. However, it does still give an unbiased
estimator for the sought integral 𝐼 , as we show in Appendix B. We
call the result in Eq. (12) our stochastic MIS (SMIS) estimator.

Relation to DMIS. Our SMIS estimator closely resembles a DMIS
estimator (4) with 𝑇 = 𝑛 techniques and one sample for each (i.e.,
𝑛𝑡 = 1, ∀𝑡 ). The key difference is that in SMIS each technique is
chosen stochastically from a set T for every independent realiza-
tion (i.e., evaluation) of the estimator. SMIS can be interpreted as
estimating a random DMIS-discretization of the CMIS integral (6)
(see discussion in Section 3.1). DMIS corresponds to the special case
where all techniques are fixed for all realizations. In fact, both DMIS
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Fig. 2. Experiment comparing the variance of our CMIS and SMIS estimators on two 1D functions (a) integrated using four 2D joint PDFs (top row), i.e., a 1D
technique space. For CMIS, we consider uniform (CMISu) and balance-heuristic weighting (CMISb), as well as several 𝑛-sample SMIS variants (SMIS𝑛 ). In
every plot, at every measurement point we equalize the total number of samples among estimators by adjusting their number of realizations. As expected,
CMISu performs worst. The SMIS𝑛 variants have consistently lower variance, approaching that of the optimal CMISb as 𝑛 increases. In (f) we plot this
convergence for the★-labeled integrand-PDF configuration. Increasing the number of combined samples is an effective way to reduce the variance of SMIS.

estimators (3) and (4) can be made stochastic without voiding their
unbiasedness by sampling the techniques prior to estimation, as we
discuss in Appendix B. SMIS thus inherits the flexibility of DMIS in
its choice of weighting functions and sample allocation, as well as its
unbiasedness conditions. Specifically, the weights must sum up to
one over all selected techniques, whereas in CMIS the normalization
is over all available techniques. We focus on the specific SMIS form
in Eq. (12) to emphasize its interpretation as a CMIS approximation.

Discussion. The advantage of the balance-heuristic SMIS estima-
tor (12) over its CMIS counterpart (10) is that the former provides
a practical way of combining a continuum of techniques by only
evaluating the conditional PDFs 𝑝 (𝑥 |𝑡) of a finite subset rather than
the marginal 𝑝 (𝑥). Another interpretation is that SMIS provides an
unbiased means to approximately sample from that marginal.
On the other hand, SMIS is an approximation to the CMIS es-

timator and the balance heuristic is thus no longer guaranteed to
minimize the variance. We analyze that variance empirically in the
following subsection. Future work can investigate the development
of better combination heuristics, tailored to SMIS, that account for
the stochastic technique selection.

Additionally, SMIS can be more costly than CMIS since its balance
heuristic requires evaluating 𝑛 conditional PDFs for each of 𝑛 sam-
ples. In the case that these𝑛2 PDF evaluations are too costly, onemay
instead opt to seek for analytically integrable (albeit sub-optimal)
weights with CMIS. We demonstrate the use of such weights in
Section 6.

Finally, SMIS also allows the techniques to be chosen from a count-
able set, as we discuss in Appendix B. Elvira et al. [2015] explored
similar estimators where 𝑛 techniques are selected uniformly out
of 𝑛 (with and without replacement). In contrast, our SMIS allows
selecting any subset of techniques, with non-uniform probability.
When the number of available techniques—even if finite—is large,
SMIS may provide an effective way of trading increased variance
for a reduced estimator invocation cost.

3.3 Variance analysis
In the SMIS estimator (12), there are numerous ways to allocate a
fixed budget of 𝑁 technique-sample pairs; below we denote SMIS𝑛
a configuration that takes 𝑛 pairs in each of 𝑁/𝑛 (averaged) indepen-
dent estimator realizations. We perform a numerical experiment,
considering three such variants: SMIS1, SMIS2, and SMIS4. We com-
pare these to two CMIS estimators, based on uniform weighting
𝑤u (𝑡, 𝑥) = 1/

∫
T d𝑡 (CMISu) and the balance heuristic (9) (CMISb),

respectively.

Experiment. In Fig. 2, we plot the variance of two 1D integrands
𝑓 (𝑥) and four 2D joint PDFs 𝑝 (𝑡, 𝑥) with a 1D technique space
T . Column (a) shows the two integrands. The top row shows the
joint PDFs, along with the corresponding 1D technique-selection
marginals 𝑝 (𝑡) (vertically) and 1D sample-selection marginals 𝑝 (𝑥)
(horizontally). For the variance plots, at each measurement point we
average increasing numbers of estimator realizations, adjusted so
that each estimator consumes the same number of total samples 𝑁 .
Intuitively, we expect the provably optimal CMISb estimator to

perform best, and the “uninformed” CMISu to perform worst as
it weighs all techniques equally. The SMIS variants, which aim to
approximate CMISb, should fall somewhere in between.
In Fig. 2b, all sampling techniques are both equally likely, since

𝑝 (𝑡) = const, and have identical conditional PDFs 𝑝 (𝑥 |𝑡). This re-
sults in there being effectively a single sampling distribution 𝑝 (𝑥),
and all estimators reduce to having the same expression.
In Fig. 2c, the joint PDF from (b) is transposed: all techniques

𝑡 have constant conditionals 𝑝 (𝑥 |𝑡) but 𝑝 (𝑡) varies. In this case,
CMISu is affected by the variation in 𝑝 (𝑡) as it evaluates the full
joint PDF 𝑝 (𝑥, 𝑡) = 𝑝 (𝑥 |𝑡)𝑝 (𝑡). All other estimators are agnostic to
this variation as they only evaluate 𝑝 (𝑥 |𝑡) or 𝑝 (𝑥).

In Fig. 2d, the technique PDF 𝑝 (𝑡) is a sinusoid and the 𝑝 (𝑥 |𝑡) vary
from uniform to linear. Each conditional PDF 𝑝 (𝑥 |𝑡) has a different
variance level, where techniques with a more linear density perform
better than techniques with a more uniform density. Here CMISu
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performs as badly as in (c). SMIS approaches the performance of
CMISb as the number of samples per realization increases.

Lastly, in Fig. 2e we show a case where the technique and sample
marginals are uniform, but the conditional densities 𝑝 (𝑥 |𝑡) vary.
When 𝑝 (𝑡) is constant, the only source of estimation variance is the
conditional 𝑝 (𝑥 |𝑡). In this case, the CMISu and SMIS1 estimators
perform the same as they effectively both multiply the conditional
density 𝑝 (𝑥 |𝑡) by a constant. Once again, increasing the number
of samples pairs 𝑛 in SMIS𝑛 improves its performance asymptot-
ically toward the optimal CMISb. For the ★-labeled function-PDF
configuration, we illustrate this variance convergence in Fig. 2f.

Discussion. In practice, when a continuous set of sampling tech-
niques is available, or when a PDF is parameterized by a continuous
parameter 𝑡 , a reasonable approach is to construct an ordinary one-
sample estimator based on a randomly chosen value for 𝑡 . Such
an estimator is identical to the one-sample balance-heuristic SMIS
estimator 𝑓 (𝑥)/𝑝 (𝑥 |𝑡). With a larger 𝑁 -sample budget, one would
typically average 𝑁 independent realizations of such estimators.
Our results in Fig. 2 indicate that it is better to instead batch as
many samples 𝑛 as possible into 𝑁/𝑛 realizations of SMIS𝑛 (12). For
example, 1 realization of the SMIS4 estimator shows a lower vari-
ance than the average of 4 realizations of SMIS1, approaching that of
the optimal CMISb estimator for increasing samples per realization.

Note, however, that SMIS𝑛 requires 𝑛2 PDF evaluations compared
to the total of 𝑛2/2 for SMIS𝑛/2 over two realizations. Depending on
the relative cost of integrand and PDF evaluation, this implies that
there exists a configuration that maximizes the efficiency of SMIS.
Finding this optimal balance is left as future work.

4 APPLICATION: PATH REUSE
Our first practical application of the CMIS framework targets ac-
celerating Monte Carlo path tracing via path reuse. Path sampling
entails a high computational cost whose amortization is desirable,
e.g., by reusing (sub)paths across multiple pixel estimations. In prior
unbiased approaches, such reuse is limited by the discrete nature of
DMIS. Path and (ir)radiance filtering methods [Ward and Heckbert
1992; Křivánek et al. 2005; Keller et al. 2014] are more flexible but
add bias and are hampered by simplistic weighting heuristics. We
show how CMIS can ameliorate these issues. As a proof of concept,
we describe a practical path-space filtering method with a biased
variant that achieves significant improvement over prior work.

4.1 Problem statement
The value 𝐼 of a pixel in the rendered image can be expressed as
an integral over the space P of all possible light transport paths
x = x1x2 . . . that connect the eye and the light sources:

𝐼 =

∫
P
𝑓 (x) dx =

∫
P
𝑓e (y)

∫
P
𝑓l (y, z) dz

𝐼 (y)

dy =

∫
P
𝑓e (y) 𝐼 (y) dy, (13)

which we decompose into integrals over prefix subpaths y and suffix
subpaths z, with x = yz.1 We split the path energy contribution
𝑓 (x) = 𝑓e (y) 𝑓l (y, z) into a contribution 𝑓e (y) from the eye and a
1Note that P = M∞ is infinite-dimensional, where M is the set of surface points in
the scene. For our purpose its decomposition into P × P = M∞ is effectively the
same space, since every light transport path has a finite length.

(b)(a)

Fig. 3. (a): Two paths are each split into a prefix and a suffix: x = yz and
x𝑖 = y𝑖z𝑖 , respectively. The suffix z𝑖 is reused via a connection to prefix y.
(b): Restricting connections to those suffixes z𝑖 whose prefix endpoints lie
in the vicinity of y. Unlike previous works’ ad-hoc weighting functions, we
weight contributions using balance-heuristic SMIS which only requires the
conditional densities 𝑝 (z𝑖 |y) and 𝑝 (z𝑖 |y𝑖 ) to achieve an unbiased estimate.

contribution 𝑓l (y, z) to the light. The latter includes a connection
term accounting for the scattering distributions at the last vertex of
y and the first vertex of z, and their mutual orientation.

For every pixel, we seek to estimate Eq. (13) by sampling a prefix
subpath y from the eye, followed by 𝑛 suffix subpaths z𝑖 :

⟨𝐼 ⟩ = 𝑓e (y)
𝑝 (y) ⟨𝐼 (y)⟩𝑛 =

𝑓e (y)
𝑝 (y)

𝑛∑
𝑖=1

𝑤 (y, z𝑖 )
𝑓l (y, z𝑖 )
𝑝 (z𝑖 )

, (14)

where𝑤 is some weighting function. Distribution ray tracing [Cook
1986] corresponds to splitting at y, with known 𝑝 (z𝑖 ) = 𝑝 (z𝑖 |y)
and 𝑤 = 1/𝑛, which is costly as the suffixes z𝑖 are specific to y.
Instead, we want to utilize non-splitting path tracing [Kajiya 1986]
and reconnect the prefix y of each path x to the suffixes z𝑖 of 𝑛 other
paths x𝑖 = y𝑖z𝑖 (Fig. 3a). Such reuse amortizes the cost of sampling
each suffix over multiple pixel estimates. Unfortunately, we cannot
directly use the z𝑖 in the estimator (14), for the following reasons:

(1) each suffix z𝑖 is sampled according to a different distribution
given its own prefix: z𝑖 ∼ 𝑝 (z𝑖 |y𝑖 );

(2) the possible prefixes y𝑖 form an uncountably infinite set.

Existing path-reuse methods sidestep these issues by restricting the
set of prefixes y𝑖 to those generated from a deterministically chosen
𝑛 pixels [Bekaert et al. 2002; Bauszat et al. 2017], combining the 𝑛 es-
timates via balance-heuristic DMIS:𝑤 = 𝑤̂ . Filtering based methods
instead consider all prefixes y𝑖 with endpoints in the vicinity of the
endpoint of y, ignoring the above issues and resorting to heuristic
weighting 𝑤 to construct a biased version of Eq. (14) [Keller et al.
2014].

4.2 CMIS formulation
Seeking to lift the limitations of prior work, our key observation
in tackling general path reuse is to interpret it as a problem of
combining sampling techniques from a continuous space. Indeed,
the above two properties are a natural fit for our CMIS framework,
by considering the prefixes y𝑖 as technique identifiers and the suffixes
z𝑖 as the samples from these techniques. The technique space T is
then the set P of all possible prefixes.
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Fig. 4. Equal-time comparison between path tracing, Keller et al.’s [2014] path filtering method, and our SMIS path filtering estimator. At low sample counts,
the latter two outperform path tracing by efficiently amortizing path sampling data. Thanks to its robust sample combination, our method outperforms path
tracing also in the long run. Notice its accuracy in resolving illumination on small-scale glossy objects—a notoriously difficult task for filtering methods.

Using these definitions of techniques and samples, we extend the
suffix integral 𝐼 (y) from Eq. (13) by following the steps in Eq. (6):

𝐼 (y) =
∫
P

∫
T
𝑤 (y′, z) dy′

=1

𝑓l (y, z) dz =
∫
T

∫
P
𝑤 (y′, z) 𝑓l (y, z) dzdy′, (15)

where𝑤 is normalized over T for every suffix subpath z. Note that
T can depend on y and will typically be T (y) ⊆ P.

CMIS estimator. We can now construct an estimator for Eq. (15)
of the form in Eq. (7) but averaging over 𝑛 realizations (y𝑖 , z𝑖 ):

⟨𝐼 (y)⟩CMIS =
1
𝑛

𝑛∑
𝑖=1

𝑤 (y𝑖 , z𝑖 ) 𝑓l (y, z𝑖 )
𝑝 (y𝑖 )𝑝 (z𝑖 |y𝑖 )

. (16)

This estimator constructs 𝑛 complete paths by connecting a given
prefix y to the suffixes z𝑖 of other, independently sampled paths
x𝑖 = y𝑖z𝑖 . Plugging ⟨𝐼 (y)⟩CMIS into Eq. (14) in place of ⟨𝐼 (y)⟩ yields
an unbiased estimator for the pixel value 𝐼 , as desired.

SMIS estimator. As shown in Section 3.1, the optimal choice of
weighting function 𝑤 in CMIS estimators is the balance heuris-
tic 𝑤̄ (9). In our setting, evaluating 𝑤̄ involves computing the nor-
malization factor 𝑝 (z𝑖 ) =

∫
T 𝑝 (y′)𝑝 (z𝑖 |y′) dy′ for each z𝑖 , which is

the unconditional density for sampling z𝑖 as a continuation of any
possible prefix subpath y′. This integral is generally not available in
closed form. We can resort to SMIS which alleviates its evaluation:

⟨𝐼 (y)⟩SMIS =

𝑛∑
𝑖=1

¤𝑤 (y𝑖 , z𝑖 ) 𝑓l (y, z𝑖 )
𝑝 (z𝑖 |y𝑖 )

=

𝑛∑
𝑖=1

𝑓l (y, z𝑖 )∑𝑛
𝑗=1 𝑝 (z𝑖 |y𝑗 )

. (17)

Plugged into Eq. (14), ⟨𝐼 (y)⟩SMIS yields an unbiased path-reuse pixel
estimator, all of whose terms are evaluable. Notably, the normal-
ization factor in Eq. (17) is the sum of densities for generating the
suffix z𝑖 from the 𝑛 sampled prefixes y𝑗 . Compared to a splitting
estimator of the form in Eq. (14) [Cook et al. 1984], our SMIS (17)
amortizes the cost of sampling each suffix across 𝑛 pixel estimates.

4.3 Practical path-space filtering algorithm
The SMIS estimator (17) provides a framework for unbiased subpath
reuse in path tracing. Practical implementations, however, need to be
mindful about setting the parameter 𝑛 which controls the amount
of reuse. Each connection to a suffix z𝑖 entails evaluating the 𝑛

densities 𝑝 (z𝑖 |y𝑗 ) for sampling its first point from the endpoints of
every prefix y𝑗 . Each estimator realization thus requires casting 𝑛2

visibility rays. This cost can be managed by shrinking the technique
space T , for example restricting it to the vicinity of the endpoint
of y (Fig. 3b). Even so, the cost of accurate PDF evaluation, which
maintains unbiasedness by ensuring zero-PDF samples are assigned
zero weight, remains high and can prevent a net improvement.

We borrow approximations from path-space filtering [Keller et al.
2014] to make our method practical. Specifically, we assume reused
paths are always visible when evaluating connections 𝑓l (y, z𝑖 ) and
conditional densities 𝑝 (z𝑖 |y𝑗 ). This is a reasonable assumption since
each z𝑖 is by construction visible from a nearby y𝑖 . We also reuse
the scattering distribution evaluation at the first vertex of z𝑖 rather
than re-evaluating it for each connection. These approximations
greatly reduce the computational cost by introducing some bias.

The resulting SMIS estimator still has the form of Eq. (17) but does
not entail any ray casting apart from sampling the initial full paths.
Notably, the weighting function is based on a balance-heuristic
combination of techniques, and it is normalized over the sampled
techniques. This is the crucial difference to the otherwise very simi-
lar path-space filtering method of Keller et al. [2014]. Theirs utilizes
conservative binary weighting normalized over the samples, culling
them based on surface similarity at the prefix endpoints. They moti-
vate this choice by empirical findings that directly weighting the
samples by such similarity norms can increase variance. In contrast,
our balance-heuristic weighting is solely based on sampling densi-
ties. Additionally, having derived our estimator from an unbiased
one, all sources of bias are known and introduced systematically.
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SMIS (Ours)
Keller et al.
Path tracing

0.376 (1.00x) 0.143 (0.38x)

Path tracing Keller et al. SMIS (Ours) Reference

0.235 (0.63x)SMAPE
0.0

1.0

~350sec with consistent filter
GPF - Staircase Scene

10.0 100.0 1000.0
0.10

0.94

log (SM
A

PE)

log (seconds)

SMIS (Unbiased) SMIS (Biased) Bias Profile

64 spp - 65849 sec 64 spp - 581 sec

0.053 (1.00x) 0.011 (0.21x)0.098 (1.79x)MSE

SMIS (Ours)

Fig. 5. Left: Equal-time comparison (350 sec) between path tracing, Keller et al.’s [2014] path filtering method, and our SMIS path filtering estimator. The latter
two efficiently reduce the noise on diffuse surfaces, however ours also handles glossy materials without introducing significant bias. Right: Equal-sample
comparison (64 samples/pixel) demonstrating our that our formulation can completely eliminate the bias in path filtering, though at a significant cost.

4.4 Results
We implemented our method as a two-stage algorithm. In the first
stage, we sample all paths, one per pixel, storing their vertices in
a hashed spatial grid. In the second stage, for the prefix y of each
path, we retrieve all nearby vertices of other paths and invoke our
SMIS estimator for y with the corresponding suffixes z𝑖 . We set the
range-search radius to 6 pixels in screen space, and reduce it at each
iteration of progressive rendering.

We compare our method against Keller et al.’s [2014] and baseline
path tracing (PT) using the same set of paths. We measure symmetric
mean absolute percentage error (SMAPE): 𝐸 = 1

𝑃

∑𝑃
𝑖=1

|𝑟𝑖−𝑒𝑖 |
|𝑟𝑖 |+ |𝑒𝑖 | , where

𝑟𝑖 and 𝑒𝑖 are the reference and estimated values for the 𝑖-th pixel,
respectively. This metric is robust to outliers and does not rely on
an arbitrary “epsilon” regularizer in the denominator, as do other
relative metrics such as the relative mean squared error.

The scene in Fig. 4 contains many glossy materials lit by two area
lights from the top and two on the space ship. The inability to handle
such scenes is a known weakness of traditional filtering approaches.
PT remains noisy, even if it can take many more samples than
the other two methods in the allotted time. Keller et al.’s filtering
replaces this noise with even more conspicuous artifacts. By treating
the prefixes y𝑖 as sampling techniques and the suffixes z𝑖 as samples
from these techniques, our SMISweighting achieves amuch superior
combination. The zoom-ins highlight its ability to resolve detail on
small-scale glossy geometry—a notoriously difficult proposition for
filtering approaches.

Figure 5 shows a mostly diffuse scene. Here, both filtering meth-
ods show noticeable noise reduction compared to PT, particularly
on the walls. However, Keller et al.’s method suffers from substantial
bias on the glossy wall socket and table. Our method handles these
cases well and halves the overall error. In the top right of the figure
we compare our practical (yet biased) method to the unbiased vari-
ant that traces all rays necessary for accurate PDF and contribution
evaluation. In this equal-sample comparison we do not shrink the
radius over time. As expected, the additional visibility checks make

GPF - Weight Scene

0.105 (1.00x)

Keller et al. SMIS (Ours) Reference

0.082 (0.78x)SMAPE
0.0

1.0

0.015 (1.00x) 0.001 (0.07x)MSE

Fig. 6. Equal-sample comparison (8 paths/pixel) of Keller et al.’s [2014]
weighting function and our balance-heuristic SMIS, all other things being
equal. Keller et al.’s weighting culls most nearby samples in regions of high
geometric variation and shows high variance. Our SMIS weighting can
robustly handle such samples even on complex glossy geometry.

the unbiased variant significantly more costly, and the biased one
slightly blurs shadowed regions.

Figure 6 compares ourmethod to a variant of Keller et al.’s [2014]’s
method, where the only difference between the two is in the sample
weighting. Keller et al.’s weighting function is based on a series
of heuristics chosen to minimize the filtering bias. As a result, it
culls most samples in regions of geometric complexity, reducing
the filtering effectiveness. In contrast, our SMIS weighting is able
to robustly handle such configurations, reducing variance and vi-
sual artifacts. Based solely on sampling densities, it manages to
preserve the strengths of each technique, as seen in more traditional
applications of MIS.
It is worth pointing out that, even when our method achieves

lower error, uncorrelated path tracing images can look subjectively
better in some cases. This is due to the positive pixel-error correla-
tion inherent to the type of path reuse employed by path filtering.
Breaking this correlation, or even turning it negative [Georgiev and
Fajardo 2016; Heitz and Belcour 2019] via correlation-aware path
reuse, is an interesting direction for future investigation.
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5 APPLICATION: SPECTRAL RENDERING
Spectral rendering overcomes the limitations of tri-stimulus (RGB)
rendering by extending the path integral (13) over the wavelength
domain Λ (Fig. 7a):

𝐼 =

∫
P

∫
Λ
𝑓 (x, 𝜆) d𝜆dx =

∫
S
𝑓 (s) ds, (18)

where S = P × Λ is the spectral path space and s = {x, 𝜆} ∈ S.
Estimating the above integral requires additionally sampling a

wavelength 𝜆 for each path x, resulting in increased variance in
the form of color noise (see Figs. 8 and 9). To reduce this noise, the
method of Wilkie et al. [2014] evaluates multiple wavelengths for
each path. Given a sampled wavelength 𝜆ℎ (called the hero wave-
length), which conditions the sampling of x, their method evaluates𝑛
spectral paths {x, 𝜆1}, . . . , {x, 𝜆ℎ}, . . . , {x, 𝜆𝑛}. The wavelength sam-
ples are uniformly spaced (Fig. 7b), thus every sample 𝜆𝑖 in that
set could be the hero wavelength. This corresponds to having 𝑛

sampling techniques for each wavelength, which are combined via
balance-heuristic DMIS:

⟨𝐼 ⟩HeroMIS =

𝑛∑
𝑖=1

𝑓 (x, 𝜆𝑖 )∑𝑛
𝑗=1 𝑝 (𝜆 𝑗 )𝑝 (x|𝜆 𝑗 )

. (19)

Such a multi-wavelength evaluation allows this estimator to achieve
tangible reduction in color noise. However, its uniform wavelength
spacing is sub-optimal for spectral power distributions (SPDs) that
concentrate energy at a few peaks (e.g., fluorescent lights). We
show how our CMIS framework can be leveraged for further noise
reduction via more flexible and effective wavelength importance
sampling.

5.1 CMIS formulation
We begin by extending the dimensionality of the spectral path inte-
gral (18) via a weighting function𝑤 over some technique space T ,
and then construct a CMIS estimator, following Section 3.1:

𝐼 =

∫
S

∫
T
𝑤 (𝜉, s) d𝜉

=1

𝑓 (s) ds, ⟨𝐼 ⟩CMIS =
𝑤 (𝜉, s) 𝑓 (s)

𝑝 (𝜉, s) . (20)

Here, 𝜉 denotes a technique that conditions the sampling of s, i.e.,
𝑝 (𝜉, s) = 𝑝 (𝜉)𝑝 (s|𝜉). The optimal choice for𝑤 is the CMIS balance
heuristic (9), however the marginal of 𝑝 (𝜉, s) over 𝜉 may not be
available in closed form. We can use SMIS instead:

⟨𝐼 ⟩SMIS =

𝑛∑
𝑖=1

𝑤 (s𝑖 , 𝜉𝑖 ) 𝑓 (s𝑖 )
𝑝 (s𝑖 |𝜉𝑖 )

=

𝑛∑
𝑖=1

𝑓 (x, 𝜆𝑖 )
𝑝 (𝜆𝑖 |𝜉𝑖 )

∑𝑛
𝑗=1 𝑝 (x|𝜆 𝑗 , 𝜉 𝑗 )

, (21)

where 𝑤 (s𝑖 , 𝜉𝑖 ) = 𝑝 (x |𝜆𝑖 ,𝜉𝑖 )∑𝑛
𝑗=1 𝑝 (x |𝜆 𝑗 ,𝜉 𝑗 ) and 𝑝 (s|𝜉) = 𝑝 (𝜆 |𝜉)𝑝 (x|𝜆, 𝜉). On

the right-hand side, we restrict the estimator to reuse the same base
path x for every spectral path, i.e., s𝑖 = {x, 𝜆𝑖 }, similarly to Wilkie
et al. [2014]. The difference to their estimator is that our SMIS formu-
lation provides more freedom in the distribution of wavelengths 𝜆𝑖
(Fig. 7c). Specifically, they can be sampled according to an arbitrary
distribution and independently from each other. The sampling of x
is conditioned on one of the wavelengths 𝜆𝑖 , chosen uniformly.

Wilkie et al. [2014] SMIS (Ours)

(a) (b) (c)

Fig. 7. (a): The contribution of path x depends on the wavelength 𝜆. Sam-
pling and evaluating a single wavelength per path produces color noise in
the rendered image. (b): Wilkie et al.’s [2014] method reduces color noise by
applying DMIS on a set of equi-spaced wavelengths. (c): Our SMIS estimator
is more flexible and allows importance sampling the wavelengths on the
continuous spectral domain, resulting in further color noise reduction.

5.2 Implementation and results
For our experiments, we used the CIE 1931 standard observer chro-
matic response curves, and converted the images into the sRGB
space. We used the technique of Jakob and Hanika [2019] to convert
input RGB reflectance values into smooth spectra. All compared
images use an equal number of samples.

In our implementation of the SMIS estimator (21), every technique
𝜉 gives the same distribution, i.e., 𝑝 (s|𝜉) = 𝑝 (x, 𝜆) = 𝑝 (𝜆)𝑝 (x|𝜆).
Each wavelength 𝜆𝑖 is sampled according to a PDF 𝑝 (𝜆) that is
proportional to the product of the observer response and amixture of
the scenes’ light-source SPDs.We use a stratified sample pattern that
is warped according to that PDF; to demonstrate the flexibility of our
formulation, we also consider a variant that performs unstratified,
independent sampling (referred to as SMISi below).
We compare our two SMIS variants to four other estimators: or-

dinary Uniform and SpectralIS which sample one wavelength per
path, HeroMIS (19), and an unpractical brute-force estimator for
Eq. (18) averaging the contributions of 512 wavelength samples for
each path. Each realization of HeroMIS and our two SMIS variants
evaluates 𝑛 = 4 wavelengths 𝜆𝑖 . All estimators use the aforemen-
tioned importance PDF 𝑝 (𝜆), except for Uniform which samples
wavelengths uniformly. Note that HeroMIS can use this PDF only
for the hero wavelength as the rest are equally spaced (see Fig. 7b).
Our SMIS can importance sample each wavelength individually.
The scene in Fig. 8 is lit by a narrow-band F10 illuminant. The

product of its SPD with the observer spectra is a spiky distribution
that necessitates importance sampling, as evident when comparing
Uniform to SpectralIS. HeroMIS brings some improvement but the
uniform wavelength spacing prevents it from accurately importance
sampling the paths’ spectral contributions (see Fig. 7c). Our SMIS
alleviates this restriction, and both variants achieve noticeably lower
color noise, with SMIS approaching the unpractical brute-force
estimator. On the top right of Fig. 8 we compare the effect of different
wavelength importance PDFs on the color noise.

Figure 9 shows a scene containing smooth dielectric objects with
wavelength-dependent refraction indices. For paths passing through
these objects, only a single wavelength has non-zero contribution,
thus neither our SMIS nor HeroMIS provides benefit. However, sim-
ilarly to Fig. 8, for non-specular paths our SMIS estimator achieves
error close to the unpractical brute-force estimator, thanks to more
effective wavelength importance sampling.
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Fig. 8. Gold dragon with under an F10 illuminant with a spiky SPD. Wavelength importance sampling can significantly reduce color noise in this scene, as
observed in SpectralIS compared to Uniform. By evaluating four wavelengths per path, HeroMIS and our SMIS achieve further improvement. Thanks to
accurately placing each individual wavelength sample, SMIS is more effective, with results very close to brute-force 512-wavelength evaluation.Spectral - Breakfast Scene

0.442 (2.25x) 0.201 (1.03x) 0.196 (1.00x)

Uniform HeroMIS SMIS (Ours)Brute-force

0.219 (1.12x)SMAPE
0.0

1.0

0.105 (3.50x) 0.032 (1.07x) 0.030 (1.00x)0.033 (1.10x)MSE

Fig. 9. Scene containing multiple, slightly dispersive glass objects under a
D65 illuminant. Our SMIS achieves the lowest error by accurately impor-
tance sampling the wavelengths according to the product of the observer
response and the illuminant SPD.

6 APPLICATION: VOLUME SINGLE SCATTERING
A continuum of path sampling techniques also arises naturally in
some methods for volumetric light transport simulation. We first
show how the photon planes of Deng et al. [2019] can be interpreted
as sampling techniques in a path integral formulation, with PDF
depending on a continuous external parameter. We then cast the
photon-plane estimation problem into our CMIS framework and
derive practical estimators for it. Specifically, we interpret Deng
et al.’s [2019] estimator as a CMIS estimator that uses a closed-
form weighting function. We also formulate a balance-heuristic
SMIS estimator that achieves lower variance through more accurate
weighting.

6.1 Problem statement
Deng et al. [2019] introduced the concept of photon planes for
computing single scattering from rectangular light sources in partic-
ipating media. A photon plane is parameterized by a line segment 𝑒
on the light and an outgoing direction 𝜔l (see Fig. 10a). A primary
ray shot from the camera gathers contribution from a given photon
plane if it intersects it.
In a path integral framework, we can interpret the above proce-

dure as a sampling technique that is parameterized by the segment
𝑒 = (𝑢, 𝛼) (Fig. 10a). Given a segment 𝑒 , we sample an outgoing
direction 𝜔l; the segment and direction define the geometry of a
(photon) plane with infinite length along 𝜔l. The technique suc-
ceeds to construct a path x if a ray sampled independently from
the camera intersects the plane. The last light-source vertex on that
path is determined by projecting the ray-plane intersection point
onto the segment 𝑒 . The resulting pixel estimator then reads2

⟨𝐼 ⟩𝑒 =
𝑓 (x)
𝑝 (x|𝑒) . (22)

This estimator is unbiased for any valid segment 𝑒 . However, the
path PDF 𝑝 (x|𝑒) contains a geometric singularity in configurations
where the ray is parallel to the plane [Deng et al. 2019]. To ameliorate
this singularity, one needs to consider all possible plane orientations
and weigh down such configurations.

6.2 CMIS formulation
We can leverage our CMIS framework to interpret the above problem
as a continuous technique-combination problem: 𝑒 = (𝑢, 𝛼) is a
technique identifier and T = R × [0, 𝜋] is the technique space.
Similarly to the other two applications, we extend the dimensionality

2In practice, the photon plane sampling, i.e., 𝑒 , 𝜔l , is correlated across pixels; however,
this correlation is external to the method and has no effect on its interpretation as a
path sampling technique, as is the case with photon beams [Křivánek et al. 2014].
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(b) (c)(a)

Fig. 10. (a): A complete path x is generated when a given sensor ray inter-
sects a photon plane. This photon plane is composed of a line segment 𝑒 on
the light and an outgoing direction𝜔l. (b): We derive our CMIS formulation
by considering all plane orientations that result in the same complete path
x, taking into account the length of each segment. (c) Deng et al. formulate
their weighting scheme by integrating the Jacobian determinants without
taking into account this segment length.

of the integration problem:

𝐼 =

∫
P
𝑓 (x)dx =

∫
T

∫
P
𝑤 (𝑒, x) 𝑓 (x) dxd𝑒, (23)

where𝑤 is a valid CMIS weighting function (8). The corresponding
balance-heuristic CMIS estimator then reads

⟨𝐼 ⟩CMIS =
𝑤̄ (𝑒, x) 𝑓 (x)

𝑝 (𝑒, x) , with 𝑤̄ (𝑒, x) = 𝑝 (𝑒, x)∫
T 𝑝 (𝑒 ′, x) d𝑒 ′

. (24)

This estimator requires the evaluation of themarginal
∫
T 𝑝 (𝑒 ′, x) d𝑒 ′,

which is the likelihood of sampling x using any possible photon
plane. This marginal integrates the joint PDF

𝑝 (𝑒, x) = 𝑝 (𝑒) · 𝑝 (x|𝑒) = 𝐶 · 𝑝 (x) | (𝑒 × 𝜔l) · 𝜔e
𝐽 (𝑒,x)

| , (25)

where 𝑝 (𝑒) = 𝐶 is constant, and only the Jacobian term 𝐽 (𝑒, x)
depends on 𝑒 . Unfortunately, 𝐽 is not analytically integrable over 𝑒
since the photon plane width varies with orientation (see Fig. 10b).

CMIS estimation. Deng et al. [2019] devised a specialized weight-
ing scheme to account for an infinite number of photon-plane ori-
entations. In our CMIS framework, their scheme can be interpreted
as using a simpler, closed-form weighting function 𝑤 in place of
the balance heuristic 𝑤̄ . That weighting function substitutes the
Jacobian 𝐽 with an analytically integrable approximation 𝐽 which
assumes the photon plane width does not change with orientation,
effectively normalizing the length of 𝑒:

𝑤 (𝑒, x) = 𝐽 (𝑒, x)∫
T 𝐽 (𝑒 ′, x) d𝑒 ′

=
| (𝑒/∥𝑒 ∥ × 𝜔l) · 𝜔e |

2
𝜋

√
((u × 𝜔l) · 𝜔e)2 + ((v × 𝜔l) · 𝜔e)2

,

(26)
where u and v are the normalized edges of the light source (Fig. 10c).

SMIS estimation. In addition to using closed-form CMIS weight-
ing, we have the option to turn to SMIS, whose balance heuristic
allows us to use exact PDFs. The SMIS estimator is straightforward:

⟨𝐼 ⟩SMIS =

𝑛∑
𝑖=1

𝑓 (x𝑖 )∑𝑛
𝑗=1 𝑝 (x𝑖 |𝑒 𝑗 )

=

𝑛∑
𝑖=1

𝑓 (x𝑖 )
𝑝 (x)∑𝑛

𝑗=1 𝐽 (𝑒 𝑗 , x)
. (27)

It considers a finite number of photon-plane orientations 𝑒 𝑗 and
uses the exact conditional PDF 𝑝 (x|𝑒 𝑗 ) from Eq. (25) for each.

[Deng et al. 2019] Ours
Unweighted

SMAPE

0.1

0.0

SM
A
P
E

MSE
3.63 (1.29x) 2.82 (1.00x)

0.79 (1.00x)1.02 (1.29x)
3.28 (1.16x)3.23 (1.14x)

1.00 (1.26x)4.23 (5.35x)

CMIS SMIS SMIS

Fig. 11. Equal-sample comparison of previous estimators by Deng et al.
[2019] (unweighted and weighted) and our SMIS estimators. SMAPE and
MSE metrics values are scaled by 102 and 104 respectively. Planes with
disproportionately high contribution can occur in both the weighted and
SMIS𝐽 estimators as their weighting scheme does not consider segment
length. Due to the versatility of our SMIS, we can easily include this missing
factor and further reduce the variance of the estimator (SMISall).

6.3 Implementation and results
We compare four estimators: unweighted (22), Deng et al.’s [2019]
𝐽 -weighting (26) (CMIS

𝐽
), and two SMIS variants (27), one using the

exact Jacobian 𝐽 (SMIS𝐽 ) and one using the approximation 𝐽 (SMIS
𝐽
).

For SMIS, we use only two (stratified) samples per realization, mak-
ing the two planes exactly perpendicular. We generate only one of
the two planes and only upon its intersection we evaluate the second
one. This approach introduces a negligible overhead compared to
the analytically weighted variants as the second plane only requires
computing a new Jacobian. We use the same set of 40,960 photon
planes for all methods, and gather them using one sample per pixel.

Figure 11 shows a scene containing a homogeneous participating
media with an isotropic phase function lit by six rectangular light
sources. The unweighted estimator produces conspicuous visual
artifacts due to singularities in the Jacobian. CMIS

𝐽
and SMIS

𝐽
re-

move these artifacts effectively, however the contributions of narrow,
bright photon planes are still visible as thin beams in the rendered
image. SMIS𝐽 accounts for the larger Jacobian of such narrow planes
and weighs them down, which results in further variance reduction.

7 CONCLUSION
This paper formally establishes the first general-purpose framework
for combining a continuum of sampling techniques in Monte Carlo
integration. Our CMIS formulation is equipped with a provably
optimal balance heuristic, and the unbiased SMIS approximation
provides a technique combination framework with immediate prac-
tical utility. We demonstrate the versatility of our framework on a
range of rendering applications, generalizing path reuse and multi-
wavelength sampling by framing them as technique-combination
problems, and improving photon-plane weighting in volumetric
rendering. We see numerous opportunities for future investigation,
both in improving the core components of the framework and in
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expanding its utility beyond the few example applications in this
paper.

Similarly to DMIS, both our CMIS and SMIS frameworks can po-
tentially benefit from designing domain-specific weighting heuris-
tics [Georgiev et al. 2012; Popov et al. 2015; Sbert et al. 2018]. Another
interesting route to explore is an alternative to the SMIS balance
heuristic with lower variance bounds that incorporates additional
information, e.g., variance [Grittmann et al. 2019]. One important as-
pect of our SMIS is the performance trade-off it comes with: higher-𝑛
SMIS𝑛 estimators achieve better variance reduction but at the cost
of squared number of PDF evaluations. A formal variance analysis
of SMIS could reveal the optimal trade-off. It could also provide
guidance for designing novel weighting heuristics.
There are many problems in light transport simulation where

DMIS is applied to a continuous domain by enforcing strict lim-
itations, e.g., path reuse [Bekaert et al. 2002; Bauszat et al. 2017]
and gradient-domain rendering [Hua et al. 2019]. SMIS provides
a simple and general tool for lifting such limitations as we have
demonstrated in this paper, enabling the exploration of more effi-
cient estimators. Last but not least, SMIS provides the means for
achieving unbiased estimation in settings where unknown marginal
densities are involved, e.g., bidirectional instant radiosity [Segovia
et al. 2006].
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A DERIVATION OF THE CMIS BALANCE HEURISTIC
Here we derive the CMIS balance heuristic (9). We do this by mini-
mizing the variance of the CMIS estimator (7) which reads

V[⟨𝐼 ⟩CMIS] = E
[
⟨𝐼 ⟩2

CMIS
]
− E[⟨𝐼 ⟩CMIS]2 (28a)

=

∫
X

∫
T

𝑤2 (𝑡, 𝑥) 𝑓 2 (𝑥)
𝑝 (𝑡, 𝑥) d𝑡d𝑥 − 𝐼2 . (28b)

Our objective is to find the function 𝑤̄ that minimizes the variance
expression (28b) under the constraints in Eq. (8). Since these con-
straints are enforced for each 𝑥 separately, the problem of finding
the optimal 𝑤̄ reduces to minimizing just the inner integral, over T :

𝑤̄ = argmin
𝑤

[∫
T

𝑤2 (𝑡, 𝑥) 𝑓 2 (𝑥)
𝑝 (𝑡, 𝑥) d𝑡

]
= argmin

𝑤

[∫
T

𝑤2 (𝑡, 𝑥)
𝑝 (𝑡, 𝑥) d𝑡

]
, (29)

where the equality on the right holds because the term 𝑓 2 (𝑥) is con-
stant over T . This problem can be solved using the Euler-Lagrange
equation from the calculus of variations as follows. We first define

𝑔(𝑡,𝑤) = 𝑤2 (𝑡, 𝑥)
𝑝 (𝑡, 𝑥) + 𝜆𝑤 (𝑡, 𝑥), (30)

where 𝜆 is the (yet unknown) Lagrange multiplier. We then write
the Euler-Lagrange equation for 𝑔, which we solve for𝑤 :

d𝑔
d𝑤

− d
d𝑡

(
d𝑔

d𝑤 ′

)
=0

= 0 ⇔ 2
𝑤 (𝑡, 𝑥)
𝑝 (𝑡, 𝑥) + 𝜆 = 0 (31)

⇔ 𝑤 (𝑡, 𝑥) = −2𝜆𝑝 (𝑡, 𝑥) . (32)

We can find 𝜆 by applying the constraint 𝐶1 (8a), i.e., by integrat-
ing Eq. (32) over T and equating the result to 1. This yields 𝜆 =

−1/
(
2
∫
T 𝑝 (𝑡, 𝑥) d𝑡

)
; substituting it back into Eq. (32) yields Eq. (9).

B UNBIASEDNESS OF THE SMIS ESTIMATOR
Here we show the unbiasedness of our SMIS estimator (12) by writ-
ing out its expected value over all random variables, i.e., the 𝑛

independently sampled pairs (𝑡𝑖 , 𝑥𝑖 ) ∼ 𝑝 (𝑡𝑖 , 𝑥𝑖 ) = 𝑝 (𝑡𝑖 )𝑝 (𝑥𝑖 |𝑡𝑖 ):
E[⟨𝐼 ⟩SMIS] = E

[
⟨𝐼 ⟩SMIS

]
(𝑡1,𝑥1),...,(𝑡𝑛,𝑥𝑛) (33a)

= E
[
E[⟨𝐼 ⟩SMIS]𝑥1,...,𝑥𝑛

]
𝑡1,...,𝑡𝑛

(33b)

= E
E

[
𝑛∑
𝑖=1

¤𝑤 (𝑥𝑖 , 𝑡𝑖 )
𝑓 (𝑥𝑖 )

𝑝 (𝑥𝑖 |𝑡𝑖 )

]
𝑥1,...,𝑥𝑛

𝑡1,...,𝑡𝑛

(33c)

= E

[
𝑛∑
𝑖=1

∫
X

¤𝑤 (𝑥, 𝑡𝑖 )
𝑓 (𝑥)

���𝑝 (𝑥 |𝑡𝑖 )�
��𝑝 (𝑥 |𝑡𝑖 ) d𝑥

]
𝑡1,...,𝑡𝑛

=
∑𝑛

𝑖=1 𝐼𝑡𝑖 = 𝐼 ; see Eq. (2)

= 𝐼 . (33d)

Note in Eqs. (33c) and (33d) that already the inner expectation over
the 𝑥 variables is equal to 𝐼 . The outer expectation over the tech-
niques 𝑡 does not change this result which, in fact, also holds for
any DMIS estimator, with any valid DMIS weighting heuristic. Fur-
thermore, note that the result also does not change whether 𝑡 are
continuous or discrete random variables; the set of techniques can
thus be countable or uncountable. DMIS corresponds to the special
case where 𝑡𝑖 are fixed and countable, e.g., finitely many.
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