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Fig. 1. Differentiable rendering of a scene featuring specular interreflection between metallic surfaces of varying roughness. We differentiate the image with
respect to the combined roughness of all objects, which produces the gradients shown in the first column with insets. A disconcertingly large number of
differential estimators can solve this problem, albeit with drastically different statistical efficiency: the following four columns highlight the standard deviation
of emitter sampling and three material-based strategies. An overview of the exhaustive set of combinations (21 methods) and results for an additional four
estimators are provided in the supplemental material, which also contains uncropped images. The objective of our work is to provide intuition on how to
navigate the large design space of differential Monte Carlo estimators.

Physically based differentiable rendering algorithms propagate derivatives
through realistic light transport simulations and have applications in di-
verse areas including inverse reconstruction and machine learning. Recent
progress has led to unbiased methods that can simultaneously compute
derivatives with respect to millions of parameters. At the same time, ele-
mentary properties of these methods remain poorly understood.

Current algorithms for differentiable rendering are constructed by me-
chanically differentiating a given primal algorithm. While convenient, such
an approach is simplistic because it leaves no room for improvement. Differ-
entiation produces major changes in the integrals that occur throughout the
rendering process, which indicates that the primal and differential algorithms
should be decoupled so that the latter can suitably adapt.
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This leads to a large space of possibilities: consider that even the most
basic Monte Carlo path tracer already involves several design choices con-
cerning the techniques for sampling materials and emitters, and their com-
bination, e.g. via multiple importance sampling (MIS). Differentiation causes
a veritable explosion of this decision tree: should we differentiate only the
estimator, or also the sampling technique? Should MIS be applied before or
after differentiation? Are specialized derivative sampling strategies of any
use? How should visibility-related discontinuities be handled when millions
of parameters are differentiated simultaneously? In this paper, we provide a
taxonomy and analysis of different estimators for differential light transport
to provide intuition about these and related questions.
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1 INTRODUCTION
The inverse analysis of images formed by visible light and other
electromagnetic radiation is a central problem in many scientific and
engineering disciplines. For example, a CT scanner images a region
of space using angularly spaced measurements, but the resulting
data is of little use without a reconstruction technique that can in-
vert the process of X-ray absorption to reveal the interior. Structured
light techniques analyze photographs of objects under carefully de-
signed illumination patterns to infer their three-dimensional shape.
Such tailored methods are highly effective within their design

scope, but they can fail when central assumptions are violated. For
example, CT reconstruction normally assumes absorptive materials
and tends to produce severe artifacts when the specimen contains
metal fragments that are highly reflective to X-rays. Structured
light techniques encounter issues when specular parts of an ob-
ject refocus illumination patterns onto unintended surface regions.
Rather than addressing these specific flaws, our goal is to study a
universal mathematical framework that has the potential to improve
the quality of solutions in these and similar challenging inversion
tasks in the future.

In a general, image formation is the result of the complex interplay
of shape, illumination, and materials, in which indirect effects like
shadowing and interreflection couple distant parts of the scene: a
bright spot on a surface could, e.g., be explained by texture or shape
variation, illumination from a light source, or focused reflection
from another object. Resolving this ambiguity requires multiple
observations and reconstruction techniques that account for the
interconnected nature of light transport and scattering.
In this article, we study the mathematical principles of differ-

entiable rendering, which formulates the inversion process as a
gradient-based optimization task defined on a high-dimensional
domain with millions of scene parameters specifying illumination,
shapes, and materials. Scene parameter derivatives of the rendered
image encode cues to unravel the radiative coupling, and they
also provide an important direction of steepest ascent in this high-
dimensional space, making them an invaluable asset for solving
inverse problems involving light. Differentiability is also required
when rendering occurs as part of a larger differentiable calculation,
such as a neural autoencoder or generative adversarial network.
So far, the creation of differentiable rendering algorithms has

followed a fairly rigid sequence of steps: derivatives are first moved
into light transport integrals solved by a standard method (e.g.,
path tracing), possibly with extra steps to handle visibility-related
discontinuities. Subsequent differentiation of the integrand involves
the standard rules of calculus and can be performed by hand, or
using software-based techniques for automatic differentiation (AD).

While this approach generally works, we observe that differenti-
ation fundamentally changes the nature of the underlying integrals.
A scene parameter can be sensitive in the sense that a small pertur-
bation of its value would lead to a significant positive or negative
change in the value of the integrand that affects the rendered image
and optimization objective. Monte Carlo theory then tells us that a
low-variance gradient estimator should place a proportional num-
ber of samples into this region. However, this type of adaptation
is simply impossible when the differential rendering algorithm is

rigidly created from its primal counterpart. In the worst case, the
sensitive region could even be zero-valued and discarded during
primal integration, in which case the differential algorithm is biased.
Recent work by Nimier-David et al. [2019] proposed a method

termed radiative backpropagation (RB), which casts differentiable
rendering into the form of an adjoint (i.e., reversed) transport prob-
lem that propagates derivative “radiation” from sensors towards
objects with differentiable parameters. Their formulation decouples
the primal and differential estimators and provides the starting point
for our investigation of the latter.

This decoupling brings considerable additional freedom but also
reveals that elementary aspects of differentiable rendering remain
poorly understood. In this paper, we investigate the following choices
that guide the design of differential transport estimators:

• Estimators that apply importance sampling often do so using
the inversion method, which involves a mapping to transform
uniform variates to the target distribution. When creating the
differential estimator, this mapping could remain unchanged,
or it could be differentiated along with the integrand. We refer
to these respectively as detached and attached strategies. The
former produce static samples, while the latter capture the in-
finitesimal motion of samples with respect to parameter changes.

• Sampling strategies are almost never used alone, but in com-
bination with others via the framework of multiple importance
sampling (MIS). Once more, the primal MIS weights could be
used as-is or differentiated to track infinitesimal changes.

• Sampling strategies are designed to approximate the shape of
the associated integrand, but this property may no longer hold
following differentiation regardless of whether attached or de-
tached strategies are used. In such cases, it may be possible to
design tailored strategies that match this new integrand, which
we refer to as differential strategies. We propose one such strategy
for the commonly used family of microfacet models. Our analysis
demonstrates clear benefits of specialized differential strategies,
while the trade-offs between detached and attached sampling
remain more nuanced and problem-dependent.

• Visibility-related discontinuities require careful treatment to
avoid bias in computed gradients. We explain how recent tech-
niques that are designed to sidestep this issue [Loubet et al. 2019;
Bangaru et al. 2020] can be adapted to the adjoint framework of
RB, enabling efficient and unbiased geometric optimization.

• Not all options are compatible with each other: some combina-
tions of attached/detached MIS and attached/detached sampling
strategies yield biased estimators, and attached sampling strate-
gies can interfere with techniques to handle discontinuous inte-
grals. We show how sampling strategies can simultaneously be
attached yet behave correctly in the presence of discontinuities.

• Finally, rendering algorithms frequently take discrete random
decisions including path termination via Russian roulette and
sampling of multi-lobed BSDFs. We show that these steps should
never be differentiated, as this would severely bias their result.

The remainder of this paper provides a taxonomy of differential
estimators based on this bewilderingly large set of possibilities.
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2 PRIOR WORK AND BACKGROUND
Differential light transport in other fields. Derivatives of Monte

Carlo simulations that are highly related to recent work on differen-
tiable rendering have been used to model the criticality of nuclear
reactors [Lux and Koblinger 1990], and to perform inverse modeling
of tissue [Hayakawa et al. 2001]. These types of methods are named
Perturbation Monte Carlo or Differential Monte Carlo.

Derivatives in rendering. Analytic and approximate ray-space
derivatives are part of the standard graphics pipeline that computes
texture-space footprints to filter texture lookups via mip-mapping
and elliptically weighted averages [Heckbert 1989]. Such footprints
can be further propagated following interaction with smooth [Igehy
1999] and rough [Belcour et al. 2013] materials. Other uses of de-
rivative information in rendering include gradient-domain render-
ing [Hua et al. 2019], adaptive sampling and reconstruction [Ra-
mamoorthi et al. 2007], and the interpolation of local solutions of
diffuse [Ward and Heckbert 1992] and non-diffuse [Krivánek et al.
2005] global illumination.

Light paths with specular and near-specular interactions present
many challenges in rendering algorithms. Path derivatives enable
efficient search [Mitchell and Hanrahan 1992; Jakob and Marschner
2012; Zeltner et al. 2020] and extrapolation [Chen and Arvo 2000]
of specular path configurations.

Differentiable rendering in computer vision. Inverse rendering is a
standard problem in computer vision, where a considerable body of
prior work has investigated ways of differentiating the process of
image formation. Indirect effects like shadows, interreflection, and
depth of field have historically played a lesser role during this pro-
cess, and related works investigating differentiable rasterization of
meshes and volumes thus mainly focus on primary visibility [Loper
and Black 2014; Rhodin et al. 2015; Kato et al. 2018; Liu et al. 2019;
Petersen et al. 2019; Laine et al. 2020].

Differentiable rendering in computer graphics. Physically based
rendering algorithms [Pharr et al. 2016] account for indirect effects,
which involves Monte Carlo sampling of integrals of the form

𝐼 (𝝅) =
∫
X
𝑓 (x, 𝝅) dx, (1)

where 𝝅 refers to a set of scene parameters. The domain X typically
consists of light paths (x0, . . . , x𝑛) connecting a light source to a
sensor via intermediate scattering events x1, . . . , x𝑛−1. In this work,
we are concerned with individual (hemi-)spherical integrals that
may reference nested integrals, hence we set X = 𝑆2. We have not
investigated path-space methods [Zhang et al. 2020], though it is
likely that many of our observations will generalize.
Physically based differentiable rendering algorithms [Li et al.

2018; Azinović et al. 2019; Nimier-David et al. 2019] estimate the
partial derivative of the above integral with respect to 𝜋 :1

𝜕𝜋 𝐼 (𝜋) = 𝜕𝜋

[∫
X
𝑓 (x, 𝜋) dx

]
, (2)

where we use a shorthand notation 𝜕𝜋 := 𝜕/𝜕𝜋 . To reduce clutter,
we also omit the dependence of 𝐼 and 𝜕𝜋 𝐼 on 𝜋 .
1For conceptual and notational simplicity, we take the derivative with respect to a
single parameter 𝜋 . However, our final algorithms will evaluate all derivatives at once.

Indirect effects are especially important when optimizing mate-
rials like participating media that are characterized by significant
multiple scattering [Gkioulekas et al. 2013, 2016; Zhao et al. 2016;
Che et al. 2018; Zhang et al. 2019]. Initial work on physically based
differentiable rendering relied on forward-mode differentiation to
propagate an infinitesimal perturbation through the simulation,
requiring a separate run for each parameter of interest. Later tech-
niques applied reverse-mode differentiation [Li et al. 2018; Nimier-
David et al. 2019] to compute derivatives with respect to all scene
parameters at once.
Reverse-mode differentiation is a widely used tool [Griewank

and Walther 2008] that greatly improves the efficiency when many
derivatives are desired, but it also introduces its own set of problems:
derivative evaluation now requires access to intermediate steps of
the primal computation, and this sequence of accesses furthermore
occurs in reverse order compared to the original program execution.
Program reversal is impractical without at least some temporary
storage of primal variables, and the size of this scratch space tends
to be overwhelming in the context of rendering.
The radiative backpropagation (RB) method [Nimier-David et al.

2020] addresses this issue by observing that the derivative program
effectively solves a separate type of transport problem where deriv-
ative “radiation” that corresponds to the derivative of the objective
in pixel space is “emitted” from the camera, “scatters” from scene
objects, and is eventually “received” by differentiable scene objects
that now take the role of the sensor. Instead of being constrained
by the inflexibility and memory overheads of automatically differ-
entiating a primal algorithm in reverse mode, one can thus create
differential algorithms that directly solve this modified transport
problem. Our work builds on this idea and leverages the decoupled
nature of primal and differential phases to evolve the latter.

In a concurrent publication, Vicini et al. [2021] propose algorithms
that can evaluate attached and detached differential estimators stud-
ied in this article using linear time and constant space complexity.

Geometric discontinuities. The integrand 𝑓 is generally riddled
with discontinuities in the incident radiance (e.g. due to geomet-
ric edges), and the position of these discontinuities furthermore
depends on the scene parameters 𝜋 that are to be differentiated.
Differentiation under the integral sign is invalid under these con-
ditions and produces biased estimators. Instead one must apply
the Reynolds transport theorem [Zhang et al. 2019, 2020], which
introduces an additional boundary correction term:

𝜕𝜋 𝐼 =

∫
X
𝜕𝜋 𝑓 (x, 𝜋) dx +

∮
𝜕X(𝜋 )

𝑓 (x, 𝜋) ⟨𝜕𝜋x, n̂⟩ dx. (3)

Here, n̂ denotes the normal direction at x ∈ 𝜕X(𝜋). Li et al. [2018]
proposed the first method to correctly account for this effect by
importance sampling the set of silhouettes edges observed from
a given scene location. However, existing data structures for this
sampling step exhibit poor scaling as the geometric complexity
grows. Zhang et al. [2020] consider a higher-dimensional path space,
which provides access to additional edge sampling strategies.

Loubet et al. [2019] observed that the presence of discontinuities
is not problematic in itself: bias arises only due to the dependence
of their position on scene parameters 𝝅 . They propose a change
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Primal estimator, Eq. (7)

Attached estimators & MIS, Eq. (14)

Detached estimator, Eq. (9)

Detached estimators & MIS, Eq. (13)Primal estimators & MIS

Detached estimators & attached MIS, Eq. (16) Attached estimator, Eq. (10)

Fig. 2. A taxonomy of differential estimators. We illustrate key operations that can be applied to a “primal” integral (white box). These include Monte Carlo
importance sampling, multiple importance sampling, and differentiation. Non-commutativity of these operations leads to a plethora of differential estimators
that we study in this article. We omit the explicit dependence of 𝑓 and 𝑝 on 𝜋 for brevity. Equation numbers refer to the corresponding locations in the text.

of variables based on a bijective spherical parameterization 𝑅(x, 𝜋)
with Jacobian determinant |𝐽𝑅 | that leaves the value of the integral
unchanged, while freezing discontinuities in place. Following this
change, the partial derivative can then be moved into the integral:

𝜕𝜋 𝐼 =

∫
X
𝜕𝜋

[
𝑓 (𝑅(x, 𝜋), 𝜋) |𝐽𝑅 (x, 𝜋) |

]
dx. (4)

Since the boundary correction is no longer needed, this integration
only involves standard interior estimators. The specific change of
variables proposed by Loubet et al. is approximate, however: it
rotates the spherical domain and cannot counteract all silhouette
motion unless it perfectly matches a spherical rotation as well.

Bangaru et al. [2020] observed that the divergence theorem can be
applied to Equation (3), turning the troublesome boundary integral
into an interior integral:

𝜕𝜋 𝐼 =

∫
X
𝜕𝜋 𝑓 (x, 𝜋) dx +

∫
X
∇x · (𝑓 (x, 𝜋) 𝑉 (x, 𝜋)) dx, (5)

where the warp field 𝑉 (x, 𝜋) smoothly interpolates the boundary
velocity 𝜕𝜋x from Equation (3). This formulation is ultimately shown
to be equivalent to the change of variables approach of Loubet et
al. In particular, the new divergence term directly corresponds to
the derivative of the Jacobian in Equation (4), and there is a one-to-
one correspondence between warp fields and parameterizations of
integrals. An important contribution of Bangaru et al. [2020] is a
novel warp field that smoothly tends to the correct velocity as one
approaches a boundary. In the change of variables formulation, this
can be interpreted as counteracting all boundary motion.

Neither of these techniques is readily usable in the framework of
RB. We show how the warp field of Bangaru et al. can be used as a
spherical parameterization that is queried as part of a memory-less
reverse mode differentiation procedure. Interestingly, bias due to
discontinuities can also arise from attached sampling strategies,
which happens even when geometry is not part of the optimization
process! We introduce a modified parameterization that addresses
this problem.

3 DIFFERENTIAL ESTIMATORS
This section introduces several estimators for differential transport
illustrated by the taxonomy in Figure 2. We analyze their properties
and correctness, assuming for now that the underlying integrals are
free of discontinuities. Section 5 will revisit the discontinuous case
and discuss interactions that arise due to the choices made here.

3.1 Detached sampling strategies
We begin with the most basic case that we refer to as the detached
strategy for reasons that will become clear shortly when we contrast
it to attached strategies. This approach corresponds to how one
would ordinarily differentiate an integral with pencil and paper, i.e.,
without focusing on its eventual numerical evaluation. We simply
move the partial derivative and differentiate under the integral sign:

𝜕𝜋 𝐼 = 𝜕𝜋

[∫
X
𝑓 (x, 𝜋) dx

]
=

∫
X
𝜕𝜋 𝑓 (x, 𝜋) dx. (6)

This transformation is legal if the integral is free of discontinu-
ities. It also holds when any present discontinuities are static, i.e.,
independent of the parameter 𝜋 being differentiated.

Importance sampling. Transport integrals in computer graphics
are almost exclusively evaluated usingMonte Carlo estimators based
on importance sampling, and we must therefore understand how
this interacts with differentiation. We focus on the classical inverse
transform sampling [Devroye 1986] which involves a diffeomor-
phism 𝑇 : U → X that parameterizes the target domain X by the
unit-hypercubeU = [0, 1]𝑛 of matching dimension 𝑛. The mapping
x = 𝑇 (u) is constructed from a target density 𝑝 (x) so that its Ja-
cobian determinant satisfies |𝐽 (u) | = 𝑝 (x)−1. The reparameterized
primal integral then takes the form

𝐼 =

∫
U

𝑓 (𝑇 (u)) |𝐽 (u) |du =

∫
U

𝑓 (𝑇 (u))
𝑝 (𝑇 (u)) du. (7)

If 𝑝 (x) ≈ 𝑓 (x), the integrand is near unity, in which case Monte
Carlo estimates of this integral are characterized by low variance.
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The mapping transforms uniformly distributed points on U into
samples on X with density 𝑝 (x).

Equation (7) is the expected value of a correspondingMonte Carlo
estimator obtained by replacing the integration with evaluation of
𝑓/𝑝 with uniform samples u ∈ U. As a slight abuse of terminol-
ogy we will also refer to these integrals as estimators. Their more
conventional expressions can be found in Figure 2 together with
references to the equation numbers in the text.
With this notation established, let us now return to differential

estimators. The change of variables in Equation (7) can be straight-
forwardly applied to a differential integral

∫
X 𝜕𝜋 𝑓 (x) dx:

𝜕𝜋 𝐼 =

∫
U

𝜕𝜋 𝑓 (𝑇 (u))
𝑝 (𝑇 (u)) du. (8)

In the case of rendering, the integrand 𝑓 depends on the scene pa-
rameters 𝜋 ∈ Π, and in primal estimators the density 𝑝 and sampling
technique 𝑇 will generally also share this dependence to enable effi-
cient scene-adaptive importance sampling. In the differential setting,
prior work [Loubet et al. 2019] has handled this dependence by in-
troducing another conceptual parameter variable 𝜋0, whose value
happens to match 𝜋 , but that otherwise does not participate in the
differentiation. In this case, the inverse transform warp and density
can depend on 𝜋0 to benefit from specialized primal sampling strate-
gies, which finally gives us the expression of the detached estimator

𝜕𝜋 𝐼 =

∫
U

𝜕𝜋 𝑓 (𝑇 (u, 𝜋0), 𝜋)
𝑝 (𝑇 (u, 𝜋0), 𝜋0)

du. (9)

While not considering part of the expression during differentia-
tion may intuitively appear incorrect, the above expression remains
a valid estimator as long as the primal strategy samples all positions
where 𝜕𝜋 𝑓 ≠ 0 with nonzero probability. This requirement may be
violated in practice and requires special precautions in differential
rendering algorithms, e.g., by ensuring a minimum density even in
zero-valued regions of the integrand. An example where this would
be necessary is a spatially varying emitter with zero-valued regions
that can potentially be “turned on” by the optimization process.
It is important to realize that a high-quality primal sampling

strategy with 𝑝 ≈ 𝑓 is not necessarily also a good choice for the
differential estimator of 𝜕𝜋 𝑓 , as illustrated in Figure 3. As with stan-
dard (i.e., non-differential) Monte Carlo estimators, the effectiveness
of a strategy depends on how well its sampling density 𝑝 matches
the integrand 𝜕𝜋 𝑓 .
Detached sampling strategies also cannot be used when the in-

tegrand contains a Dirac delta function, which collapses the inte-
gration domain. This affects tasks like computing derivatives with
respect to the surface normal of a mirror.

3.2 Attached sampling strategies
Many widely used sampling strategies depend on scene parameters.
Examples from the context of physically-based rendering include:

(1) Sampling of directionally peaked distributions like microfacet
models that depend on a roughness parameter.

(2) Directional sampling of environment maps proportionally to
their textured intensity.

Sampling weightsIntegrands
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+2 +8
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+10

0

Fig. 3. 1D examples of detached samplers. Top left: 𝑓 (blue) follows a
wrapped normal distribution parameterized by standard deviation 𝜋 = 𝜎 .
Its derivative 𝜕𝜋 𝑓 (red) has a markedly different shape. Top right: The
sampling density 𝑝 = 𝑓 yields a zero-variance primal estimator 𝑓/𝑝=1 (blue),
while the detached estimator of the derivative 𝜕𝜋 𝑓/𝑝 (red) produces large
sampling weights.Bottom row: The same experiment with a different value
of 𝜋 . The problem is less pronounced as 𝜕𝜋 𝑓 and 𝑝 become more uniform.

(3) Any BSDF sampling method that has an implicit dependence
on the local frame which is computed from the shading nor-
mals (and ultimately, the surface positions).

In this case, the generated samples conceptually move when we
perturb the associated scene parameter 𝜋 . The previously discussed
strategy discarded these effects and was thus detached from this
motion, motivating its name. We now turn to attached strategies
that do account for the additional dependence. With this change,
everything including the function 𝑓 , the transformation 𝑇 , and the
division by the probability 𝑝 are jointly differentiated.

𝜕𝜋 𝐼 =

∫
U

𝜕𝜋

[
𝑓 (𝑇 (u, 𝜋), 𝜋)
𝑝 (𝑇 (u, 𝜋), 𝜋)

]
du. (10)

It is interesting to note that the attached strategy will usually be
produced by default when Monte Carlo sampling code is transpar-
ently differentiated using techniques for automatic differentiation.
Consequently, attached sampling is also possible across more than
one scattering event. In that case, the integration domain U and
its counterpart X simply have higher dimension. Let us briefly con-
sider the setting where dimU = dimX = 1 to better understand
Equation (10). Applying the above derivatives then yields

𝜕𝜋 𝐼 =

∫
U

1
𝑝 (𝑥, 𝜋)2 ·

[
𝑝 (𝑥, 𝜋) (𝑓𝜋 (𝑥, 𝜋) +𝑇𝜋 (𝑢, 𝜋) 𝑓𝑥 (𝑥, 𝜋)) (11)

− 𝑓 (𝑥, 𝜋) (𝑝𝜋 (𝑥, 𝜋) +𝑇𝜋 (𝑢, 𝜋) 𝑝𝑥 (𝑥, 𝜋))
]

d𝑢.

where 𝑇 (𝑢, 𝜋) has been replaced by 𝑥 for readability, and the sub-
scripts 𝑥 and 𝜋 indicate partial derivatives with respect to the first
and second function argument, respectively. What can we learn
from this expression? When 𝑓 and 𝑝 are roughly proportional, then
so are their derivatives 𝑓𝑥 , 𝑓𝜋 , 𝑝𝑥 , and 𝑝𝜋 . In this case, symmetries
in the expression within square brackets cause it to be close to zero,
which means that the differentiated sampling technique remains a
good choice for the differential estimator. While that is excellent
news, there are also multiple potential pitfalls involving this type
of estimator.
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Product integrals. InMonte Carlo rendering, the integrand is often
a product of complex terms, 𝑓 = 𝑔 · ℎ, of which only one is targeted
by the sampling strategy. Suppose that the sampling density 𝑝 is
perfectly proportional to the first term, i.e., 𝑝 = 𝐶 ·𝑔 for𝐶 ∈ R. Then
the attached differential estimator reduces to

𝜕𝜋 𝐼 = 𝐶−1
∫
U

[
ℎ𝜋 (𝑥, 𝜋) +𝑇𝜋 (𝑢, 𝜋) ℎ𝑥 (𝑥, 𝜋)

]
d𝑢. (12)

This expression indicates that two properties carry over from the
primal case: 𝑔 is handled perfectly in the sense that no variance
will arise from this term. Integration of the second term ℎ proceeds
through the parameterization 𝑇 (𝑢, 𝜋).
In contrast to the primal case, an additional term captures the

differential change of the reparameterized function ℎ(𝑇 (..)) . It has
the potential to introduce significant variance when the param-
eterization 𝑇 rapidly distorts ℎ for small perturbations of 𝜋 . This
additional complication does not exist in the primal case. It would be
tempting to mix and match, i.e., to attach the factor being sampled
and detach the other term to avoid this additional source of variance.
However, this generally introduces bias2. Figure 4 illustrates the
difference between complete sampling of an integral and partial
sampling based on a factor.

Attached sampling naturally handles integrands containing delta
functions, which are not supported by most previous work on differ-
entiable rendering. This case arises e.g. when computing gradients
with respect to the surface normal of a perfectly specular mirror. In
this situation, the product of (delta) BSDF and incident radiance sim-
plifies to just the radiance term that will then be evaluated through
the mapping 𝑇 . This addresses a severe limitation of detached sam-
pling techniques.

Discrete decisions. Sampling techniques often consume uniform
variates to take discrete decisions like choosing the component
of a multi-lobe BSDF. In contrast to the unified differentiation of
integrand, density, and parameterization in Equation (10), the prob-
abilities of such discrete decisions should never be handled in an
attached manner, as doing so would introduce severe bias. For exam-
ple, consider a path termination criterion such as Russian Roulette,
which only continues the random walk with probability 𝛼 , while
applying a scaling correction to account for this change:

RR(𝑢, 𝛼) =
{

1/𝛼, 𝑢 < 𝛼,

0, otherwise.

In practice, the probability 𝛼 would be related to the albedo of prior
scattering interaction, which introduces a dependence on the scene
parameters (in the extreme case, 𝛼 = 𝜋 ). However, this expression
then behaves like a parameter-dependent discontinuity that was
explicitly forbidden at the beginning of this section. Handling such
components using a detached estimator resolves the issue.

Creation of discontinuities. Techniques of the detached type can
be used to compute unbiased estimates of discontinuous integrands
if the positions of these discontinuities do not depend on scene pa-
rameters 𝜋 . This common case arises e.g. when optimizing materials

2A product integral with 𝑔 (𝑥) = ℎ (𝑥) = 𝑥\ on [0, 1] provides a simple example of
this: all possible ways of attaching and detaching the terms and reciprocal probability
lead to different derivative estimates for \0 = 1.
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Fig. 4. 1D Examples of attached samplers. Top row: 𝑔 follows a normal
distribution parameterized by standard deviation 𝜋 = 𝜎 and is sampled with
density 𝑝 approximating 𝑔. Variance due to attached sampling weights (red)
in U resembles the primal case (green), while a detached estimator (blue)
performs substantially worse. Bottom row: Product integral of two scaled
Gaussians 𝑔 = ℎ sampled proportionally (𝑝 ∼ 𝑔) , where ℎ is independent of
𝜋 . Extra derivative terms involving the non-sampled factor in Equation (12)
inject additional variance, causing the attached estimator (red) to perform
poorly compared to an estimator of the primal product integral (green).

Reference point

(a) (b) (c)

Fig. 5. The visible hemisphere from a given reference point in a Cornell
box scene (a) is mapped through a microfacet importance sampling trans-
form onto the unit square U for two different roughness values 𝛼 = 0.4
(b) and 𝛼 = 0.6 (c). Motion vectors (white arrows) indicate how static
discontinuities (red and blue lines) become dependent on 𝛼 through this
parameterization. The sampling routine used in this visualization targets
the Beckmann microfacet distribution through a concentric disk mapping.

on static geometry. The ability to easily solve such problems de-
spite the omnipresent visibility-induced discontinuities is a welcome
simplification.

The previous discussion has shown that attached sampling strate-
gies can be superior to detached ones, particularly when the former
are built from high-quality primal methods. However, attempting
to differentiate discontinuous integrands using such attached strate-
gies reveals a fundamental problem: these methods warp the inte-
grand in a parameter-dependent fashion, and this transformation
will naturally also affect discontinuities. Consequently, as shown
in Figure 5, discontinuities that were previously static on X will
lose this property on the reparameterized domainU, introducing
bias. As-is, such attached techniques simply cannot be used with
discontinuous integrands, which rules out most rendering-related
applications. Fortunately, it is possible to address this limitation us-
ing reparameterized attached sampling that we present in Section 5
for the important special case of directly visible discontinuities on
the unit sphere X = 𝑆2.
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3.3 Multiple importance sampling
Combinations of two or more sampling strategies via multiple im-
portance sampling (MIS) [Veach and Guibas 1995] are widely used
in Monte Carlo rendering. We consider MIS in gradient estimators
given its essential role for variance reduction in the primal setting.
Analogously to the choice of attaching or detaching the estima-
tors themselves, the same decision must now be taken for their
MIS weights, resulting in a 2 × 2 matrix of possible combinations
(Sections 3.3.1 to 3.3.4).

The main benefit of attached strategies lies in their ability to con-
sider the dependence on 𝜋 for variance reduction. This is ultimately
not very useful for MIS weights, where a strong dependence on 𝜋

represents an unusual situation (this would mean that a perturba-
tion of a scene parameter rapidly changes the sampling technique
of choice). While MIS continues to play an important role in com-
bining several strategies, the choice of whether to attach or detach
its weights is thus largely irrelevant from the viewpoint of variance
reduction. However, not all possible combinations of attached es-
timators and attached MIS are useful or even correct, and we now
review the various possibilities from this viewpoint:

3.3.1 Detached estimators, detached MIS. Suppose that we are al-
ready working with detached estimators: in this case, it would be
natural to similarly neglect the 𝜋-dependence of MIS weights during
differentiation:

𝜕𝜋 𝐼 =

∫
X

𝑛∑
𝑖=1

𝑤𝑖 (x𝑖 , 𝜋0) ·
𝜕𝜋 𝑓 (x𝑖 , 𝜋)
𝑝𝑖 (x𝑖 , 𝜋0)

, (13)

where 𝑛 techniques with sampling transforms 𝑇𝑖 and PDFs 𝑝𝑖 are
combined, denoting a sample drawn from strategy 𝑖 as x𝑖 = 𝑇𝑖 (u, 𝜋0).
This combination is a standard application of MIS to a particular
function that happens to be a derivative, and its correctness thus
follows from prior work [Veach and Guibas 1995].

3.3.2 Attached estimators, attached MIS. Alternatively, both estima-
tors and MIS weights can be parameterized through corresponding
inverse-transform mappings 𝑇𝑖 : U → X to track all parameter
dependencies during the differentiation process. This case is correct
by definition as we are now simply looking at the derivative of the
entire expression.

𝜕𝜋 𝐼 =

∫
U

𝑛∑
𝑖=1

𝜕𝜋

[
𝑤𝑖 (𝑇𝑖 (u𝑖 , 𝜋), 𝜋) ·

𝑓 (𝑇𝑖 (u𝑖 , 𝜋), 𝜋)
𝑝𝑖 (𝑇𝑖 (u𝑖 , 𝜋), 𝜋)

]
. (14)

3.3.3 Attached estimators, detached MIS. In our experiments, we
also considered a third logical option of combining attached estima-
tors with detached MIS weights:

𝜕𝜋 𝐼
?
=

∫
U

𝑛∑
𝑖=1

𝑤𝑖 (𝑇𝑖 (u𝑖 , 𝜋0), 𝜋0) · 𝜕𝜋
[
𝑓 (𝑇𝑖 (u𝑖 , 𝜋), 𝜋)
𝑝𝑖 (𝑇𝑖 (u𝑖 , 𝜋), 𝜋)

]
. (15)

However, this combination can be severely biased. Differentiation
of the fully attached case in Equation (14) via the product rule
generates mixed terms of the form (𝜕𝜋𝑤𝑖 ) · 𝑓/𝑝𝑖 that are missing in
Equation (15), and this introduces bias unless 𝜕𝜋𝑤𝑖 = 0 (which does
not represent an interesting case).

3.3.4 Detached estimators, attached MIS. Finally, one can also at-
tach the MIS weights of a set of detached estimators.

𝜕𝜋 𝐼 =

∫
U

𝑛∑
𝑖=1

𝜕𝜋 [𝑤𝑖 (𝑇𝑖 (u𝑖 , 𝜋0), 𝜋) · 𝑓 (𝑇𝑖 (u𝑖 , 𝜋0), 𝜋)]
𝑝𝑖 (𝑇𝑖 (u𝑖 , 𝜋0), 𝜋0)

. (16)

The validity of this approach follows from the correctness of the
individual steps that can be used to derive it: introducing MIS, dif-
ferentiating, followed by Monte Carlo importance sampling. See
also the sequence of steps leading to the top left in the taxonomy in
Figure 2. We mainly mention this case for completeness and have
not found it to be a compelling strategy in our experiments.

3.3.5 Combining attached and detached strategies. The full set of
options is even more fine-grained than the above list may suggest:
mixing attached and detached estimators is also possible. The valid-
ity of this approach once more follows from the correctness of the
individual steps, as highlighted in Figure 6. In some sense, this is
not too surprising, as this type of combination will naturally arise
if one of the strategies 𝑝𝑖 is independent of the parameter 𝜋 being
differentiated.

MIS between detached and attached estimators

Fig. 6. The decision of whether to attach or detach a sampling technique
and its MIS weight can be made separately for each technique, as illustrated
by this derivation sketch.

3.3.6 Summary. In summary, MIS remains a helpful tool for com-
bining sampling strategies. Not all possible combinations of attached
MIS weights and estimators are useful or yield unbiased gradient
estimates. Based on experimental evaluation, we recommend to
either jointly attach or detach estimators and their MIS weights.

A curious thought that arises following this discussion is whether
one can combine attached and detached versions of the same primal
estimator via MIS to draw on each strategy where it performs best?
This intuition from primal estimators sadly does not transfer to the
differential world: MIS weights are guided by sampling probabilities,
and those probabilities would be identical in such a combination
(modulo minor differences in how differentiation is performed with
respect to 𝜋 ). It will be interesting to explore extensions and gener-
alizations of MIS that can perceive the deficiencies of a differential
estimator and suitably adapt.
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Fig. 7. 1D examples of custom differential samplers. Top row: The wrapped
normal distribution 𝑝 is ill-suited for sampling its derivative 𝜕𝜋 𝑓 = 𝜕𝜋𝑝

and produces large weights. Bottom row: the densities 𝑝+ and 𝑝− are pro-
portional to the positive and negative regions of 𝜕𝜋 𝑓 and produce constant
sampling weights that reduce the variance of the estimator.

4 DIFFERENTIAL SAMPLING STRATEGIES
Section 1 hinted at a fascinating possibility that arises when a differ-
entiable renderer relies on decoupled primal and differential phases:
we can introduce additional strategies that are specifically designed
to improve sampling of differential transport. From a high level,
such a differential sampling strategy will involve an integral that
looks identical to the detached case from Equation (9):

𝜕𝜋 𝐼 =

∫
U

𝜕𝜋 𝑓 (𝑇 (u, 𝜋0), 𝜋)
𝑝 (𝑇 (u, 𝜋0), 𝜋0)

du. (17)

The key difference is that the sampling technique encoded in 𝑝 and
𝑇 is no longer constrained by the primal phase. Essentially anything
could be used, and we can exploit this freedom to reduce variance
in challenging situations. Figure 7 shows a simple 1D example of a
differential sampling strategy tailored to the normal distribution.
Differential sampling strategies also address an issue that we

had first observed in Equation (12), which appears when attached
sampling techniques are invariably applied to product integrals that
occur in rendering algorithms. Attached strategies will warp all
factors, and this introduces additional derivative terms that can
introduce significant variance. In contrast, the formulation in Equa-
tion (17) is static and does not suffer from this problem.

Not all scene parameters call for custom sampling strategies, how-
ever. Many material models include a directionally uniform albedo
that is adequately handled by primal strategies. In contrast, scene pa-
rameters controlling surface roughness have a pronounced effect on
the sampling process and constitute an example where differential
strategies can make a large difference. This is apparent in Figure 1,
where the differential strategy (“diff. detached”) in the rightmost
column generally performs best. We now discuss an example of a
sampling technique targeting the family of microfacet BRDFs.

4.1 Differential microfacet sampling
Microfacet distributions [Torrance and Sparrow 1967; Cook and
Torrance 1982] are integral building blocks of many widely used
reflectance models. In numerical experiments, we found that deriva-
tives with respect to their roughness parameter were characterized

GGXBeckmann

0
−0.1 −0.1

+0.1 +0.1

0

Fig. 8. Plots of two microfacet distributions (Beckmann and GGX) with
roughness parameter 𝛼 = 1/2 (black). The derivative with respect to 𝛼

produces a signed function with positive (green) and negative (red) lobes
of equal area. Our differential microfacet sampling strategy specifically
samples these two lobes to efficiently compute gradients that characterize
how the transport simulation changes with respect to perturbations of 𝛼 .

by severe variance. Figure 3 highlights the fundamental problem:
changes in the shape of the integrand break detached estimators.
On the other hand, attached estimators applied to a product integral
with material and lighting terms tend to perform poorly when the
parameter-dependent warp distorts the incident radiance function.
We leverage the freedom of a decoupled differential transport simu-
lation to introduce a specialized differential sampling strategy that
will address these challenges.

Consider the derivative of an isotropic microfacet BRDF [Walter
et al. 2007] with respect to its roughness parameter 𝛼 :

𝜕𝛼 𝑓𝑠 (𝝎,𝝎 ′, 𝛼) = 𝐹 (𝝎,𝝎ℎ)
4 cos\ cos\ ′

𝜕𝛼
[
𝐷 (𝝎ℎ, 𝛼) ·𝐺 (𝝎,𝝎 ′,𝝎ℎ, 𝛼)

]
. (18)

Here, 𝐹 refers to the Fresnel term (which does not depend on 𝛼), 𝐷
is the microfacet distribution, 𝐺 is the shadowing-masking term,
and 𝜔ℎ denotes the half-direction vector between 𝜔 and 𝜔 ′. We
ignore the derivative in 𝐺 as it only has a minor effect on the di-
rectional distribution and focus on the microfacet distribution 𝐷 ,
limiting our discussion to two isotropic models by Beckmann and
Spizzichino [1987] and Trowbridge and Reitz [1975]. In computer
graphics, the latter is also known as the GGX distribution [Walter
et al. 2007]. In spherical coordinates, these two distributions are
defined as

𝐷GGX (\, 𝛼) cos\ =
2𝛼2 sin\

cos3 \ (𝛼2 + tan2 \ )2 , (19)

𝐷Beck. (\, 𝛼) cos\ =
2𝑒

− tan2 \
𝛼2 sin\

𝛼2 cos3 \
, (20)

where the cosine term on the left side is required for normalization.
Following differentiation, the function splits into a positive and nega-
tive lobe of equal area (Figure 8) with a zero crossing at \0 = tan−1 𝛼 .
Our goal is to construct a method that samples proportionally to
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Fig. 9. Visualization of samples produced by the Beckmann and GGX (top)
and dBeckmann and dGGX (bottom) sampling techniques for 𝛼 = 1/2. Posi-
tive and negative lobes are highlighted in red and green.

the absolute value of 𝑝 = 𝜕𝛼 [𝐷 (\, 𝛼) · cos\ ], where

𝑝dGGX (\ ) =
4𝛼2 tan\ (tan2 \ − 𝛼2)
cos2 \ (𝛼2 + tan2 \ )3 , (21)

𝑝dBeck. (\ ) =
2𝑒1− tan2 \

𝛼2 tan\ (tan2 \ − 𝛼2)
𝛼4 cos2 \

. (22)

At this point, it is important to observe that Monte Carlo importance
sampling produces zero variance when the sampling density is per-
fectly proportional to a non-negative integrand. This property no
longer holds for signed integrands—in the worst case, sign-related
variance can fully negate the benefits of tailored importance sam-
pling strategies even if they match the integrand in an absolute
sense. Multiple techniques exist to handle such cases [Owen 2013].
We rely on antithetic sampling to generate paired and correlated
samples from the two lobes. This involves two rendering passes
using the same random generator state that are finally averaged.
Details about the necessary inverse transformmapping can be found
in Appendix A. Figure 9 contrasts samples drawn from primal and
differential microfacet distributions.
One limitation of differential BSDF sampling strategies is that

they require an incident illumination estimate for the newly sampled
direction, which must be computed using recursive path tracing or
an alternative primal algorithm. Regular BSDF sampling remains
necessary to scatter the adjoint radiance to other parts of the scene,
which propagates like normal light3. These branching randomwalks
cause the method to have a quadratic time complexity as a function
of path length, which is also a limitation of the original (unbiased)
RB algorithm.

Other considerations. When the differentiation problem involves
parameters beyond surface roughness, the differential transport
simulation must also incorporate detached BSDF sampling to obtain

3For clarification, we refer to Section 5.1 that re-derives RB. In particular, indirect
propagation occurs via term (T2), and differential strategies target term (T3).

low-variance estimates of the associated derivatives. These two
strategies can then be combined via detached MIS. The previous
derivation is not specific to the reflective case and also enables
differential sampling of rough transmission. We did not investigate
generalizations to more advanced models with anisotropy and vNDF
sampling [Heitz and D’Eon 2014] and consider them beyond the
scope of this article.
Combinations of differential and detached/attached strategies

via MIS are also possible: our experiments for example combine
differential sampling techniques with standard emitter sampling.
We mention for completeness that differential strategies could

also be attached, which would entail tracking derivatives of 𝑇 and
𝑝 with respect to 𝜋 in Equation (17). Attaching was of crucial im-
portance when we were restricted to working with primal sampling
techniques, but it is of limited use here as𝑇 and 𝑝 can be arbitrarily
chosen. Detached strategies can also directly handle integrands with
static discontinuities, for instance when optimizing the materials of
a scene with fixed geometry. No special handling of moving discon-
tinuities (Section 5) is required in that case, which is beneficial as
this comes at considerable additional runtime cost.

5 REPARAMETERIZING DISCONTINUOUS INTEGRANDS
We finally turn to the case of integrands containing discontinuities,
whose position furthermore depends on 𝜋 . To do so, we adopt the
high-level framework of Loubet et al. [2019] and transform the
integrals using a recently proposed parameterization by Bangaru
et al. [2020]. This counteracts the motion of discontinuities, so that
the tools from Section 3 are readily applicable.
However, both prior methods by Loubet et al. and Bangaru et

al. are designed to work in a context where the primal and differen-
tial phases are rigidly coupled via reverse-mode differentiation. This
means that these methods suffer from severe overheads to store
primal program variables that are later needed for differentiation. In
contrast, our work operates within the decoupled framework of ra-
diative backpropagation (RB) [Nimier-David et al. 2020], which turns
the differentiation into an independent simulation that transports
derivative radiation from sensors to differentiable objects.
The goal of this section is to clarify how reparameterization-

based techniques can be cast into a suitable form to enable their use
within such a differential transport simulation. We will also revisit
the case of attached samplers to finally address a severe limitation
with moving discontinuities encountered in Section 3.2.

Background. We briefly review relevant background material
from the works of Loubet et al. [2019] and Bangaru et al. [2020] and
refer to these papers for an in-depth discussion of the theory and
relevant mappings that we import without modifications.
Suppose that the following integral must be differentiated with

respect to a scene parameter 𝜋 that influences the position of discon-
tinuities. Examples of such parameters include camera pose, object
transformations, vertex positions, etc. To avoid biased estimates, we
must then perform a change of variables

𝜕𝜋 𝐼 = 𝜕𝜋

∫
X
𝑓 (x, 𝜋) dx = 𝜕𝜋

∫
X
𝑓 (𝑅(x, 𝜋), 𝜋) · | 𝐽𝑅 (x, 𝜋) | dx (23)

to freeze the discontinuities with respect to perturbations of 𝜋 . Here,
𝑅 : X × Π → X is a (re-) parameterization of the domain X that
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must necessarily depend on the scene parameters to accomplish this
task. Both prior works performed the parameterization on the unit
sphere X = 𝑆2, in which case |𝐽𝑅 | denotes the Jacobian determinant
for a given 𝜋 that counteracts the change in spherical area due
to this mapping. Following these changes, it is legal to move the
derivative into the integral. Note that some operations involving this
parameterization (e.g. evaluating Jacobian determinants) implicitly
assume that the underlying spherical domain is accessed using
suitable 2-dimensional coordinates, as the ambient 3D space is too
high-dimensional. We rely on spherical coordinates for this purpose.

We use the letter 𝑅 to contrast with the other kind of parameteri-
zation𝑇 encountered in Section 3.1, which was used for importance
sampling via the inverse transform method. We will for now ignore
the additional complication of importance sampling and revisit this
case in Section 5.2.

Similarly to Loubet et al., our proposed parameterization satisfies
𝑅(x, 𝜋0) = x, which ensures that its introduction does not affect the
primal simulation. Here, 𝜋0 refers to the detached scene parameters.
Furthermore, 𝜕𝜋𝑅(x, 𝜋) = 𝜕𝜋𝑃 (x, 𝜋) where 𝑃 : X × Π → X returns
a position, whose velocity 𝜕𝜋𝑃 must be carefully chosen so that the
parameterization can accomplish its goal. The equations above are
easily satisfied if 𝑅 is defined as

𝑅(x, 𝜋) = x + 𝑃 (x, 𝜋) − 𝑃 (x, 𝜋0) . (24)

However, a suitable function 𝑃 must still be chosen. In particular,
𝑃 must be a smooth function that satisfies the following critical
requirement: as x approaches another point x𝑏 (𝜋) that is located
on a 𝜋-dependent discontinuity, the velocity 𝜕𝜋𝑃 (x, 𝜋) must tend
to 𝜕𝜋x𝑏 (𝜋).

The specific function 𝑃 proposed by Loubet et al. is approximate
and can introduce bias. We therefore follow the improved approach
of Bangaru et al., who define 𝑃 in terms of a spherical convolution of
a base position 𝑃 and a weighting kernel𝑤 requiring normalization
through an additional integral in the denominator:

𝑃 (x, 𝜋) =

∫
X 𝑤 (x, x′) 𝑃 (x′, 𝜋) dx′∫

X 𝑤 (x, x′) dx′
. (25)

The function 𝑃 (x, 𝜋) encapsulates the steps of tracing a ray into
the associated direction x and returning the intersection position
in spherical coordinates. This computed value is not particularly
interesting, since the projection of the intersection onto the sphere
is simply the original ray direction. However, the 𝜋-derivative of
this value will now capture the object motion. These attached di-
rections are then convolved via Equation (25), whose weights 𝑤
become extremely large as x and x′ approach a silhouette. This
furthermore occurs in a “unidirectional” fashion to ensure that the
final result 𝑃 (x, 𝜋) follows the motion of the occluder as x → x𝑏 ,
while ignoring the occluded object. The weights use a boundary
test function 𝐵 to query approximate distances to the visible edges,
e.g., based on shading normal dot products. Both integrals in Equa-
tion (25), are evaluated using Monte Carlo sampling and must use
the same set of samples to reduce variance to an acceptable level.
We refer to Bangaru et al. [2020] for further discussion and complete
definitions of all quantities.

5.1 Reparameterized radiative backpropagation
The derivation of RB [Nimier-David et al. 2020] begins with the
differential forms of the three equations that jointly define the prob-
lem solved by any rendering algorithm: scattering, transport, and
measurement. We only cover the case of scattering, which is repre-
sentative of the needed changes. This involves the rendering equa-
tion relating outgoing to incident illumination using the BSDF 𝑓𝑠 .
When reparameterized using 𝑅, its primal form reads

𝐿o (p,𝝎) = 𝐿e (p,𝝎)

+
∫
𝑆2
𝐿i (p, 𝑅(𝝎 ′, 𝜋)) 𝑓𝑠 (𝝎, 𝑅(𝝎 ′, 𝜋)) |𝐽𝑅 (x, 𝜋) | d𝝎 ′⊥. (26)

Since the discontinuities are now static, it is legal to differentiate un-
der the integral sign. Application of the product rule then produces
a total of four derivative terms:

𝜕𝜋𝐿o (p,𝝎) = 𝜕𝜋𝐿e (p,𝝎) (T1)

+
∫
𝑆2
𝜕𝜋𝐿i (p, 𝑅(𝝎 ′, 𝜋)) 𝑓𝑠 (𝝎,𝝎 ′) d𝝎 ′⊥ (T2)

+
∫
𝑆2
𝐿i (p,𝝎 ′) 𝜕𝜋 𝑓𝑠 (𝝎, 𝑅(𝝎 ′, 𝜋)) d𝝎 ′⊥ (T3)

+
∫
𝑆2
𝐿i (p,𝝎 ′) 𝑓𝑠 (𝝎,𝝎 ′) 𝜕𝜋 |𝐽𝑅 (x, 𝜋) | d𝝎 ′⊥. (T4) (27)

The above expression has been simplified by noting that 𝑅 and its
Jacobian reduce to the identity when they occur in a term that is not
differentiated. Intuitively, this equation states that the process of
differentiation can be modeled by simulating scattering, transport,
and eventual measurement of a hypothetical “differential radiance”
quantified by 𝜕𝜋𝐿i and 𝜕𝜋𝐿o (there is one such function per scene
parameter 𝜋 ). Equation (27) takes the role of an energy balance
equation that indicates the following properties that we discuss out
of order:
T1. Differential radiance is emitted when the primal emission 𝐿e

depends on 𝜋 .
T3. Objects, whose material model depends on the parameter 𝜋 ,

convert some of the ordinary radiance incident on the surface
(𝐿i) into differential radiance (𝜕𝜋𝐿o).

T4. Differential radiance is also added or subtracted when the pa-
rameterization 𝑅 expands or contracts space depending on 𝜋 .

T2. Finally, once created, differential radiance scatters like ordinary
light (i.e. involving the BSDF of scene objects).

In contrast to RB without reparameterization, (T4) is new and all
terms are now at least partially warped by the parameterization.
Bangaru et al. [2020] relate the parameterization’s Jacobian de-

terminant to a vector field divergence. We use this relationship as
the divergence can be cheaply approximated together with Equa-
tion (25). After reordering terms,

𝜕𝜋 |𝐽𝑅 (x, 𝜋) | = ∇𝝎 · 𝜕𝜋𝑅 = 𝜕𝜋 (∇𝝎 · 𝑅) , (28)

the divergence in parentheses can be handled analytically, produc-
ing derivatives of the weighting kernel 𝑤 . We perform the outer
derivative using reverse-mode AD, which will then backpropagate
gradients to the scene geometry. At this point, Equation (27) could
in principle be solved separately for scene parameter 𝜋 to compute
𝜕𝜋𝐿i at the camera, resulting in a derivative image. This approach
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1 def reparam_rb(𝜋, 𝜹𝑦):
2 # Initialize parameter gradient(s) to zero
3 𝜹𝜋 = 0
4 for _ in range(num_samples):
5 # Sample ray proportional to sensor response and pixel filter
6 (p, 𝝎), s_val, s_pdf = sensor.sample()
7 # Query adjoint emitted radiance associated with current ray
8 A_e = 𝐴e (𝜹𝑦 , 𝑝,𝜔) / num_samples
9 # Backpropagate through the reparameterized pixel filter
10 𝜹𝜋 += adjoint([[ sensor.eval(p, 𝑅 (𝝎, 𝜋 )) ]],
11 A_e * 𝐿i (p,𝝎) / s_pdf)
12 # Backpropagate through the divergence
13 𝜹𝜋 += adjoint([[ ∇𝝎 · 𝑅 (𝝎, 𝜋 ) ]],
14 A_e * s_val * 𝐿i (p,𝝎) / s_pdf)
15 # Propagate adjoint radiance into the scene
16 𝜹𝜋 += reparam_rb_Li(𝜋, p, 𝑅 (𝝎, 𝜋 ), A_e * s_val / s_pdf)
17 # Finished, return gradients
18 return 𝜹𝜋

Listing 1. Reparameterized radiative backpropagation takes scene parame-
ters 𝜋 and an adjoint rendering 𝜹𝑦 as input. This pseudocode fragment is
responsible for the measurement integral. It samples a set of sensor rays,
queries the associated emitted adjoint radiance 𝐴𝑒 and propagates these
gradients into the scene, while accounting for geometric discontinuities.

does not scale to scenes with high-dimensional parameter spaces, as
millions of derivative images would potentially need to be rendered
per gradient descent step.

RB exploits the reciprocal nature of this problem and transports
derivatives in the opposite direction, i.e., from the camera towards
scene objects. The radiation emanating from the camera in this
phase is a signed quantity (“adjoint radiance”) that specifies how the
rendered image should change to optimally improve the optimiza-
tion objective. Only a single transport problem needs to be solved
in this case, which is substantially more efficient than the naïve
approach mentioned above. Once the adjoint radiance reaches a
specific surface location, it must still be converted into a scene pa-
rameter gradient. Here, it is useful to observe that a point is generally
only characterized by a few local parameters, such as the positions
of surrounding vertices, texels referenced by a texture lookup in
a shader, etc. Whereas path tracing performs a random walk that
reads such local surface properties, RB then performs an analogous
random walk that writes local gradients at every interaction.
Listings 1 and 2 provide the pseudocode of the reparameterized

RB method and can be contrasted to similar code fragments in the
original paper [Nimier-David et al. 2020]. We reuse their notation
adjoint([[ <expr> ]], grad_out) to refer to the reverse-mode
derivative of the expression <expr> that backpropagates a gradient
with respect to its output (grad_out) towards the scene parameters
𝝅 , returning another gradient resulting from this step.

5.2 Reparameterizing attached strategies
As discussed earlier in Section 3.2, attached sampling provides a con-
venient way to reuse a primal sampling procedure in a differential
estimator. Accounting for its parameter dependence during differen-
tiation can be an effective variance reduction strategy. Unfortunately,
the parameter-dependent change of variables also causes previously
static discontinuities to move with respect to perturbations in 𝜋 (see
Figure 5), which severely limits the utility of this approach.

1 def reparam_rb_Li(𝜋, p, 𝝎, 𝛿𝐿):
2 # Find an intersection with the scene geometry
3 p′ = 𝑟 (p,𝝎)
4 # T1: Backpropagate through reparameterized emitters, if any
5 𝜹𝜋 = adjoint([[ 𝐿e (p′,−𝝎) ]], 𝛿𝐿)
6 # Sample a direction from the BSDF
7 𝝎′, b_val, b_pdf = sample 𝑓𝑠 (p′,−𝝎, ·)
8 # T3: Backpropagate through the reparameterized BSDF
9 𝜹𝜋 += adjoint([[ 𝑓𝑠 (p′,−𝝎, 𝑅 (𝝎′, 𝜋 )) ]],
10 𝛿𝐿 * 𝐿i (p,𝝎′) / b_pdf)
11 # T4: Backpropagate through the divergence
12 𝜹𝜋 += adjoint([[ ∇𝝎′ · 𝑅 (𝝎′, 𝜋 ) ]],
13 𝛿𝐿 * b_val * 𝐿i (p,𝝎′) / b_pdf)
14 # T2: Recurse to account for indirect differential radiance
15 return 𝜹𝜋 + reparam_rb_Li(𝜋, p′, 𝑅 (𝝎′, 𝜋 ), 𝛿𝐿 * b_val / b_pdf)

Listing 2. This pseudocode fragment provides reparam_rb_Li() refer-
enced in Listing 1. It implements the reparameterized RB version of the
transport and scattering equation that transports derivatives through the
scene and backpropagates adjoint radiance 𝛿𝐿 to objects with differentiable
parameters.

To address these challenges, we define a secondary parameteriza-
tion analogous to Equation (24), which will similarly counteract the
movement of the samples to prevent issues with bias due to moving
discontinuities:

𝑅(x, 𝜋) = x − 𝐵(x)𝑇 (u, 𝜋) + 𝐵(x)𝑇 (u, 𝜋0) (29)

In the equation above, 𝐵(x) can be interpreted as a smooth scaling
factor used to slow down the samples movement as they approach
discontinuities. Interestingly, setting a constant value 𝐵(x) = 1∀x
would freeze all sample movement resulting in the detached esti-
mator. Based on this observation, we will use 𝐵(x𝑏 ) to transition
back to a detached estimator near the discontinuities where the
attached strategies are troublesome. We found the boundary test
𝐵 from Bangaru et al. [2020] to work well for this purpose when
turned into a smoothed interpolant using Equation (25).

As this new type of reparameterization is based on similar princi-
ples as prior work [Loubet et al. 2019; Bangaru et al. 2020], it also
inherits its limitations. In particular it is only defined for integration
over the unit sphere X = 𝑆2 and is not sufficient for attached strate-
gies that involve differentiation through multiple scattering events
at once. To ensure the correctness of the computed gradients in our
implementation, we thus split the integrand in Equation (26) into
two parts. The indirect illumination component of 𝐿i is handled anal-
ogously to the previous section and uses a detached estimator. The
direct component however involves a nested reparameterization
where 𝑅 now counteracts both types of discontinuities discussed in
this section. Reverse-mode differentiation will then automatically
propagate gradients through both parameterizations. Finally, we
can apply the attached estimator from Equation (10) to the integral.
We call this approach the reparameterized attached strategy, and an
example comparison to “naïve” attaching can be seen in Figure 10.

6 RESULTS
We evaluated our methods experimentally in a differentiable ren-
dering system based on Mitsuba 2 [Nimier-David et al. 2019]. All
experiments were performed on an NVIDIA TITAN RTX graph-
ics card (23 GiB of RAM) using OptiX 7.2 [Parker et al. 2010] for
hardware-accelerated ray tracing.
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Texture gradients

Fig. 10. We differentiate pixel intensity w.r.t. the textured roughness 𝜋 of a metal surface. A reflected sphere occludes the light source (a, b), causing problems in
attached sampling strategies: sampled directions𝝎′ depend on 𝜋 , which creates a parameter-dependent discontinuity in the integration domain. Consequently,
naïve attached sampling misses important gradients at the reflected silhouettes (c) which our reparameterized attached strategy can capture correctly (d).
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Primal rendering Detached BSDF sampling Diff. detached BSDF sampling

Finite differences Emitter sampling Naïve attached BSDF sampling

Reparam. attached BSDF sampling
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Fig. 11. This equal-time comparison based on a classic scene by Veach and Guibas illustrates the performance of several estimators described in this article.
We differentiate the roughness textures of the metal plates; the average Beckmann roughness increases from top to bottom (𝛼avg ∈ {0.01, 0.02, 0.06, 0.13}).
(a) Primal rendering of the scene. (b) Ground-truth gradients computed using finite differences at a high sample count. (c) Gradients computed using emitter
sampling. (d) As in Figure 10, naïve attached BSDF sampling exhibits bias due to parameter-dependent discontinuities. We had to scale the gradients of this
technique by a factor of 50× so that they are visible. (e-g): Three unbiased estimators using detached, differential detached, and reparameterized attached
BSDF strategies. The supplemental material contains additional results using multiple importance sampling, along with variance visualizations.

6.1 Variance analysis
We now turn to concrete example scenes to analyze the statistical
behavior of several differential estimators presented in this paper.
Figure 1 showcases a complex scene with many glossy interreflec-
tions involving varying degrees of roughness and complex illumi-
nation from a combination of area lights and an environment map.
Figure 11 represents a more controlled test setup based on a scene
by Veach and Guibas [1995] with single-bounce glossy reflections
for varying roughness values and light source sizes. In both cases
we compute gradient images with respect to a single value 𝜋 that is
added to all roughness parameters in the scene. In other words, they
illustrate what happens to the renderings when all glossy objects
are roughened slightly. Like in primal rendering, the efficiency of
estimators depends also on the concrete values of the (differentiated)
scene parameters so this allows us to assess the variance at various
levels of roughness at once.

Like in primal rendering, (detached) emitter sampling is good at
handling concentrated illumination reflected by relatively rough
surfaces. In contrast, the analysis of material-based differential esti-
mators is more nuanced. While weaknesses of individual strategies

mostly carry over into their differentiated versions, the same is
not the case for their strengths. For instance, the effectiveness of
detached BSDF sampling on highly specular materials is greatly re-
duced compared to its primal counterpart, which occurs due to mis-
matches between integrand and sampling density (Section 3.1). The
differential sampling strategy for microfacet BSDFs from Section 4
is generally the most robust in these tests. None of the discussed
strategies is specifically designed to handle chains with multiple
glossy interactions, and variance is consequently high in such image
regions. Attached sampling (Section 3.2) is most complex in terms of
differentiation, since it must also consider the parameter dependence
of samples. If done naïvely, this dependence can introduce disconti-
nuities that can add bias (Figure 11). Our reparameterized attached
strategy (Section 5.2) avoids this bias and at times achieves signifi-
cant improvements over detached BSDF sampling. Its effectiveness
in Figure 1 is held back by limitations regarding product sampling
between BSDF and incident illumination discussed in Section 3.2.

The supplemental material contains a more complete comparison,
including the use of multiple importance sampling, gradient and full-
size images from Figure 1, and variance visualizations for Figure 11.
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Fig. 12. Convergence comparison of various BSDF sampling techniques in the context of roughness texture optimization. The statistical efficiencies when
computing gradients using the various estimators (detached, differential detached, and attached) also manifest themselves in terms of varying convergence
rates when using them during optimization based on stochastic gradient descent. Differential detached sampling (green) performs robustly in different
settings and always outperforms the detached method (blue) that relies on less efficient, primal microfacet sampling in this case. Attached sampling (red) can
outperform both detached variants in cases where incident illumination is smooth (bottom) but can be inefficient in case of more complex illumination (top)
due to its limitations involving product integrals. An animated version including all intermediate states is shown in the supplemental video.

6.2 Optimizing spatially varying roughness
Figure 12 compares the convergence of different estimators in a
simple optimization task. We optimize the spatially varying rough-
ness of a flat surface using standard stochastic gradient descent
and a single view. We compare three estimators (detached, differ-
ential, and attached BSDF sampling) and two conditions: a rough
microfacet (GGX) material under natural environment illumination,
and a more specular microfacet (Beckmann) material under smooth
synthetic directional illumination (three colored light sources with
emission profiles modeled by spherical von Mises-Fisher distribu-
tions). Reparameterization is not needed here due to the lack of
discontinuities.
All three methods compute the correct gradients in expectation,

and they generate samples in a comparable amount of time. There-
fore, the main distinguishing factor is their variance and the re-
sulting impact on convergence speed. In all cases, we begin with a
randomly initialized texture and run 100 iterations of SGD with a
fixed learning rate. The observed convergence behavior is unsur-
prising and matches our previous observations on the variance of
specific estimators: detached sampling handles rough reflections
relatively well, but is clearly outperformed by the other methods in
the more specular setting. Attached sampling based on the BSDF
is expected to perform poorly when the reparameterization warps

another factor with significant variation like the interior environ-
ment map. Nonetheless, this approach actually performs best in the
second setting with smooth illumination. Differential sampling is
robust in both cases and always outperforms detached sampling.

6.3 Efficient differentiation of geometric discontinuities
We compare our approach to geometric discontinuities to themethod
of Loubet et al. [2019]. The differential evaluation of this prior work
was based on conventional AD and therefore rigidly coupled to the
primal computation. Both steps proceeded viawavefronts, where one
or more computational kernels were launched per scattering event,
exchanging intermediate state via global memory. However, both
reverse-mode AD and wavefront-style execution come at the cost
of severe storage requirements that are proportional to both scene
complexity (path length) and rendering quality (resolution, samples
per pixel). Once the available GPU memory is exhausted, the com-
putation must be split into multiple passes to curtail memory usage,
which tends to further increase the cost of gradient evaluation.

The technique described in Section 5 improves upon this in two
ways: first, it incorporates Loubet et al.’s [2019] change of variables
into a differential light transport simulation that propagates the
derivative of received radiance in reverse mode. This breaks the
rigid coupling between primal and differential phases and thus also
the need to memorize primal program variables associated with
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Primal rendering Loubet et al. 2019 Reparameterized RB

Fig. 13. Performance comparison between reparameterized RB (green)
and the method of Loubet et al. [2019] (orange). When computing image
gradients with respect to translation of the chair, both methods produce
gradients with roughly equivalent variance, but involving substantially
different time and memory requirements. Loubet et al.’s method is based
on wavefront-style evaluation that saturates the 23 GiB of VRAM of a Titan
RTX card at a resolution of 2562 with 16 samples per pixel. Beyond this
point, computation needs to be split into multiple passes or crops, causing a
steeper increase in computation time (dashed lines). The adjoint approach
of reparameterized RB is compatible with a more efficient megakernel-style
evaluation with minimal memory requirements and improved runtime cost.

each scattering interaction. The second improvement comes as an
immediate corollary and matches a corresponding step in prior
work [Nimier-David et al. 2020]: casting the differentiation task as
a transport simulation enables the implementation of the method
using megakernel-style evaluation that finally removes all need to
maintain large memory regions for intermediate program state.

The benchmark in Figure 13 compares our method’s computation
time and memory usage to the method of Loubet et al. using their
reference implementation. The test scene exhibits low complexity,
and the path length was limited to only two bounces. Still, memory
usage of the method of Loubet et al. easily exceeds the total capacity
of the used NVIDIA TITAN RTX graphics card (23 GiB) at low image
resolution and sample count. Increasing either quality knob then
requires rendering in passes, which has an adverse effect on the
computation time. The memory usage of our method is independent
of resolution and sample count as no primal simulation variables
must be stored, and this leads to improved scalability in such cases.
We now demonstrate two prototypical optimization tasks per-

formed using this method. The convergence behavior over time is
visualized as part of the supplemental video.

6.3.1 Geometry and shading optimization. Figure 14 showcases the
joint reconstruction of shape and material from a set of target im-
ages, using our reparameterized RB algorithm with detached BSDF
sampling (all materials are diffuse, hence attached and detached

strategies coincide). The reference is synthetic and rendered from
5 surrounding viewpoints, and we furthermore validate the result-
ing reconstruction using a hold-out viewpoint placed on top of the
target. We parameterize the object using a displaced ellipsoid base
mesh (642 displacement texture) and a diffuse albedo texture (10242

pixels), which requires simultaneous differentiation with respect
to more than one million parameters. For this to be feasible within
a realistic amount of time, reverse-mode differentiation is key. We
have found the relative L1 loss function to be well-suited for this
challenge as it focuses evenly on all regions of the images despite
different brightness levels. To avoid convergence to local minima
during the optimization, we use a multi-resolution scheme where
the optimized textures start out at low resolution and are gradually
upsampled to their target sizes throughout the process.

6.3.2 Camera and light source pose estimation. Another interesting
application of inverse rendering is the problem of 6D pose estima-
tion, see Figure 15. In this example we determine the position and
orientation of the camera in a target image, as well as the location
of a spherical area light. The scene used in this experiment exhibits
complex effects like glossy interreflections, soft shadows, and global
illumination which are all naturally handled using physically based
methods but would be challenging for differentiable rasterizers. Our
method reparameterizes all ray directions to avoid discontinuities
from the moving light source. Recall from Section 5 that this step
takes derivatives of surface intersections that were previously pro-
jected onto the unit sphere. Unsurprisingly, the moving camera
causes a similar type of discontinuity requiring another reparame-
terization. It uses a slightly modified projection step, in which the
camera origin and direction are affected by the differentiated scene
parameters instead of the intersected surface position.

7 CONCLUSION
Differentiable Monte Carlo rendering provides a powerful new in-
strument in the pursuit of complex visual inverse problems in com-
puter graphics and beyond.
The initial problem definition is easily stated: one must simply

evaluate the derivative of an estimator. Yet, pursuing the path of
this harmless differential leads to an astonishing proliferation of
estimators, parameterizations, and parameterizations of parame-
terizations, revealing that we must now revisit many previously
well-understood aspects of rendering in a different light.

Our work represents a first survey of the large space of differen-
tial Monte Carlo transport estimators. Many specimens encountered
by this exploration were still fundamentally based on an underlying
primal algorithm, although we show that specialized differential
estimators hold significant promise in improving the efficiency of
differentiable rendering in the future. Many other directions are con-
ceivable: we envision next event estimators for emitted differential
radiance and differential path guiding. At the same time, our analysis
shows that intuition from the primal world may not always transfer.

Discontinuous integrands remain a bothersome element of differ-
entiable rendering. Our work shows how suitable reparameteriza-
tions can be integrated into an efficient adjoint method, enabling
geometric optimization of scenes with vast numbers of parame-
ters and essentially no memory overheads. On the flipside, these
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Fig. 14. Joint optimization of a displacement map and a diffuse texture. More than a million parameters are optimized simultaneously (10242 diffuse texture,
642 displacement texture) for five different view points scattered around the object. Top: Subsequent states of the target object during the optimization.
Bottom: The same states from a hold-out point of view, looking at the object from the top. Right: Convergence rates for both optimized and unoptimized
view points. An animated version including all optimized views can be seen in the supplemental video.
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Fig. 15. 6D camera pose and light position estimation in a scene with complex light transport involving soft shadows and glossy interreflections. Top: Camera
view at different steps during optimization. Bottom: Visualization of the scene from the top at the same steps (camera shown as an actual object).
Right: Convergence of the loss and error plots of the 9 parameters that are jointly optimized. The supplemental video shows an animated version of this result.

mappings increase the cost of differentiable rendering considerably,
and their stochastic nature can inject extra variance into otherwise
benign integrals.
Multiple importance sampling for differentiable estimators re-

mains highly useful, but other aspects of it are still poorly under-
stood: differentiable estimators are potentially much worse than
their primal analogues, and this is not “perceived” by MIS weights
that are based on primal probabilities. Developing a truly differential
form of MIS that transfers the optimality will be a promising avenue
of future research. Another current issue entails chains of specular
interactions that may each introduce a separate set of discontinuities.
Current parameterization-based techniques only focus on directly
visible discontinuities and therefore cannot handle such cases.

While gradients are important for high-dimensional optimization,
they alone may not be enough when the objective is highly non-
convex. Certain scene representations (e.g. vertex positions of a
triangle mesh) are particularly susceptible and produce undesirable
local minima. Further research is necessary to understand how scene
parameterizations affect the energy landscape of optimization tasks.
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A DIFFERENTIAL MICROFACET SAMPLING
Section 4.1 presented the derivative of standard microfacet models
with respect to their roughness parameter 𝛼 , producing functions
that consisted of a positive and negative lobe. Both lobes have equal
area and can be individually normalized using normalization con-
stants 𝑁GGX = 2/𝛼 and 𝑁Beck. = 2/(𝛼 𝑒) respectively.

Here, we show how they can be sampled using inverse transform
sampling [Devroye 1986]. We first integrate the derivative with
respect to 𝛼 over elevation angles \ to obtain associated CDFs 𝑃+NDF
and 𝑃−NDF that we invert to arrive at the following sampling tech-
niques that suitably transform uniform random variates b ∈ [0, 1):
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Note that the Beckmann variant uses the branches 𝑘 ∈ {−1, 0} of
the Lambert W functionW𝑘 (𝑥) which unfortunately is not available
in analytic form. We found it easiest to use a numeric evaluation
based on a few iterations of a Newton solver, though alternatively,
approximated version that can be evaluated directly are available
as well [Veberic 2010].
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