
Discontinuity-Aware 2D Neural Fields: Supplemental document
YASH BELHE, University of California San Diego, USA
MICHAËL GHARBI, Adobe Research, USA
MATTHEW FISHER, Adobe Research, USA
ILIYAN GEORGIEV, Adobe Research, UK
RAVI RAMAMOORTHI, University of California San Diego, USA
TZU-MAO LI, University of California San Diego, USA

In this supplemental document we provide insight into why grid-based
methods are unsuitable to construct feature fields without approximations,
as well as further implementation details of our method.

1 GRID REPRESENTATIONS SIMPLIFY CURVE
TOPOLOGY

A potential approach to construct a feature field is to use a hybrid
data structure containing both a grid and the set of discontinuity
curves. This approach is commonly applied by classical feature-
based texture methods [Ramanarayanan et al. 2004; Sen 2004; Tum-
blin and Choudhury 2004; Tarini and Cignoni 2005; Parilov and
Zorin 2008] for representing sharp discontinuities in textures and
images. These methods construct a regularly spaced grid and store
the features at the corners of every grid cell. Reconstruction within
each cell follows by interpolating features at the corners while
avoiding smoothing across the discontinuities.
Once these methods pick a grid resolution, the locations of the

grid vertices are fixed, and they cannot adapt to the topology of the
curve network. This makes the approximation accuracy resolution
dependent. More precisely, the four values at the corners can resolve
at most four regions within each grid cell. At the cost of increasing
resolution, the fraction of grid cells with more than four regions can
be reduced. Nontheless, to correctly resolve the color in all regions,
they require infinite subdivision, because any finite grid size can
always contain cells with more than four regions, as shown in Fig. 1.

Therefore, existing methods usually have to modify the topology
of the curve network, in a way that violates our continuity criteria
(2) and (3) in paper Section 4.1. For example, the method of Parilov
and Zorin [2008] requires each grid cell to contain a maximum of
two discontinuity curves, and simplifies the curves to satisfy the
constraints. Since we use a curved triangulation that adapts to the
curve topology, we can achieve resolution independence without
modifying the curve topology.

© 2023 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3618379.

Fig. 1. A case that is difficult to handle using classical feature-based tex-
tures [Ramanarayanan et al. 2004; Sen 2004; Tumblin and Choudhury 2004;
Tarini and Cignoni 2005; Parilov and Zorin 2008]. These methods store fea-
tures at the corners of a grid cell, and reconstruct the continuous signal
using edge-aware interpolation. However, it is impossible for these methods
to handle certain topology when the discontinuity edges divide the space
inside a grid into more than four regions (no matter how much we subdivide
the grid), while preserving the desired smoothness and discontinuities.

2 IMPLEMENTATION DETAILS
Curved triangulation. TriWild’s [Hu et al. 2019] curved triangula-

tion allows us to specify parameters to control the mesh generation.
The relative target edge length determines the resolution of the
generated mesh. We use values between 0.001 and 0.1 depending on
the signal complexity. The relative feature envelope determines the
scale up to which the input discontinuity curves should be respected;
we use values between 0.0001 for rendering and 0.001 for other ap-
plications, to ensure that most of the discontinuities are preserved
by the triangulation (98.5% for the roses scene). Furthermore, we
compress the linear triangle meshes for the rendering application
using Draco (mesh connectivity is maintained and 0.0001% average
error for the vertex positions in the hairball in Figure (1)); we have
not experienced any performance degradation by doing so.

Feature assignment. We have three types of features in our feature
field (Section 4.3): (1) isotropic features F associated with vertices,
(2) clockwise/counterclockwise features F cw

𝑖 𝑗
/F ccw

𝑖 𝑗
associated with

directed edges, and (3) curve features F curve
𝑖,𝑇

associated with vertex-
triangle pairs. All features are stored in a single array and each
has five trainable parameters. The data structures defined below
store indices into this array for each feature type. Most features
are isotropic; for these, an array maps vertex indices to parameter
indices. For the clockwise features we use a sparse matrix, where
the 𝑖, 𝑗 th entry stores the index for the directed edge from 𝑖 to 𝑗 ; we

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.

HTTPS://ORCID.ORG/0009-0009-7070-2845
HTTPS://ORCID.ORG/0000-0002-7622-4970
HTTPS://ORCID.ORG/0000-0002-8908-3417
HTTPS://ORCID.ORG/0000-0002-9655-2138
HTTPS://ORCID.ORG/0000-0003-3993-5789
HTTPS://ORCID.ORG/0000-0001-5443-470X
https://doi.org/10.1145/3618379


217:2 • Yash Belhe, Michaël Gharbi, Matthew Fisher, Iliyan Georgiev, Ravi Ramamoorthi, and Tzu-Mao Li

do the same for the counterclockwise feature. For the curve feature
too, we use a sparse matrix, this time the 𝑖, 𝑗 th entry stores the index
for the 𝑖th vertex and 𝑗 th triangle.

Rasterization pipeline. While the data structures defined above
are useful to logically connect features with trainable parameters,
lookups into sparse matrices can lead to slow inference. For faster
inference, we setup a few buffers per triangle that contain all the
information necessary for feature interpolation within the triangle.
For each discontinuous vertex in a triangle, we store a pointer to
the parameter and the vertex position for the closest clockwise and
counterclockwise feature. For each continuous vertex in a triangle,
we store a pointer to the parameter for the corresponding feature.
We also populate buffers with information about the Bézier curve
control points if the triangle contains one. This pipeline allows more

synchronous data fetching. We emulate this in PyTorch and expect
much faster inference when done in a true rasterization pipeline.

REFERENCES
Yixin Hu, Teseo Schneider, Xifeng Gao, Qingnan Zhou, Alec Jacobson, Denis Zorin,

and Daniele Panozzo. 2019. TriWild: Robust Triangulation with Curve Constraints.
ACM Trans. Graph. (Proc. SIGGRAPH) 38, 4, Article 52 (2019), 15 pages.

Evgueni Parilov and Denis Zorin. 2008. Real-time rendering of textures with feature
curves. ACM Trans. Graph. 27, 1 (2008), 1–15.

Ganesh Ramanarayanan, Kavita Bala, and Bruce Walter. 2004. Feature-Based Textures.
In Eurographics Workshop on Rendering.

Pradeep Sen. 2004. Silhouette maps for improved texture magnification. In Graphics
Hardware. 65–73.

Marco Tarini and Paolo Cignoni. 2005. Pinchmaps: textures with customizable discon-
tinuities. Comput. Graph. Forum (Proc. Eurographics) (2005).

Jack Tumblin and Prasun Choudhury. 2004. Bixels: Picture Samples with Sharp Embed-
ded Boundaries. Rendering Techniques (Proc. EGWR) (2004).

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.


	Abstract
	1 Grid representations simplify curve topology
	2 Implementation Details
	References

