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Abstract—Molecular visualization is one of the cornerstones
in structural bioinformatics and related fields. Today, rasteri-
zation is typically used for the interactive display of molecular
scenes, while ray tracing aims at generating high-quality
images, taking typically minutes to hours to generate and
requiring the usage of an external off-line program.

Recently, real-time ray tracing evolved to combine the
interactivity of rasterization-based approaches with the superb
image quality of ray tracing techniques. We demonstrate how
real-time ray tracing integrated into a molecular modelling
and visualization tool allows for better understanding of the
structural arrangement of biomolecules and natural creation
of publication-quality images in real-time.

However, unlike most approaches, our technique naturaly
integrates into the full-featured molecular modelling and vi-
sualization tool BALLView, seamlessly extending a standard
workflow with interactive high-quality rendering.

Keywords-structural bioinformatics; ray tracing; molecular
modeling; rendering; visualization; ray casting

I. INTRODUCTION

The comprehension of the three-dimensional geometry of
individual molecules, their potential complexes, and their
physico-chemical properties is often key for understanding
the biomolecular processes. For instance, rational drug de-
sign often involves the development of small molecules that
are tailored to fit and fill a certain binding pocket and to
interact favorably with the target molecule in that position.
Thus, visualizing complex molecules and their properties of
interest, e.g. electrostatic potentials, has since been one of
the cornerstones of molecular biology and related fields.

Significant attention has been paid to create a faithful and
intuitive representation of three-dimensional arrangements
on a two-dimensional computer screen. Apart from the
use of high-end stereoscopic displays to simulate three-
dimensional vision, research in molecular visualization has
focused on providing the user with visual cues to improve
the understanding of structural relationships. These consist,
on the one hand, of a variety of different models or visu-
alization modes of biomolecular entities (e.g. cartoon rep-

resentations, ball-and-stick models, or surface renderings),
each one highlighting specific aspects of the structure under
consideration. On the other hand, our perception of three-
dimensional objects relies on their interaction with light and
simulating such an interaction significantly aids the brain in
interpreting a two-dimensional picture as a representation of
a three-dimensional entity. Obvious examples of such effects
are shadows, light attenuation, and reflections.

However, efficient and accurate implementation of such
visual effects, is a challenging task. Typically, the demand
for real-time display and full interactivity, i.e. for the ability
to animate, move, or modify molecular structures and their
components, has prevented the routine use of many useful
visualization techniques. For instance, most molecular view-
ers do not render shadows, simulate correct light attenuation
and – to the best of our knowledge – none offers reflections.

The state of the art technique for simulating those effects
and achieving high rendering quality, is ray tracing. Ray
tracing, however, has traditionally been deemed too slow
for real-time or interactive display of complex scenes. Thus,
while ray tracing is widely popular in molecular graphics, its
use has so far been restricted to offline generation of high-
quality publication images, where rendering one image can
take up to several hours on a standard PC.

Interactive visualization has instead relied on rasteriza-
tion, accelerated by dedicated graphics hardware. However,
using rasterization, correct and robust implementation of the
described visual effects can be both complex and inefficient.

Hence, many important and useful visual cues are ne-
glected when running interactively. In addition, the signif-
icant mismatch between high quality image and interactive
preview makes preparation of publication images a painful,
time consuming, and sometimes even impossible task, espe-
cially if movies (like molecular dynamics simulations) are
to be prepared.

Recent advances in computer graphics research enable ray
tracing to achieve real-time performance on complex scenes
while retaining high visual quality. Consequently, interest in



Figure 1. Light attenuation in depth perception. These images demonstrate the effect of light attenuation on a spatial perception. On the left is an
image of 1pma renderered using only direct illumination without shadows and light attenuation. On the right is an interactively ray traced image with
shadows and correct light attenuation.

the molecular visualization community in such methods has
greatly increased, and indeed real-time ray tracing methods
have been reported in the literature [1]–[3].

All previous work, however, has focused on rendering
of selected representation(s) only, neglecting the need to
combine visualization with the full set of modelling capabil-
ities. In particular, the highly-used cartoon model has been
so far completely neglected even though its use especially
for complex structures is very common. Also, a standalone
visualization-only tool is of little practical importance. To
provide a tangible advantage, the high-quality visualization
must be tightly integrated into a day-to-day researcher
worflow, giving as smooth experience as possible.

In our work we have integrated a general, triangle-based
real-time ray tracing framework, the RTfact library [4],
into the full-featured molecular viewing and modelling tool
BALLView [5], [6]. This allows us to render all the standard
representations and their arbitrary combinations, including
the cartoon model. The interactive ray tracing is used in the
standard workflow, making its use as easy as a classical ras-
terization while offering the advanced visual effects available
all the time. We show how the use of real-time ray tracing
allows to boost spatial perception and how it facilitates and
simplifies the creation of publication quality images from an
intuitive graphical user interface.

II. BALLVIEW

Studying, simulating, and manipulating molecular objects
on a computer requires powerful frameworks that on the
one hand offer different visualization modes and coloring
schemes to graphically present the properties of interest
and on the other hand provide all the required editing,
modelling, and simulation machinery. But implementing all
these functionalities is a complex task. Force fields, for
instance, are usually numerically unstable and hard to im-
plement efficiently. Further complications arise when trying

to offer all required functionality in an intuitive graphical
user interface (GUI) to a largely non-technical user base.

Despite the technical difficulties, a number of successful
molecular modeling and viewing applications exist today,
such as PyMol [7], VMD [8], Chimera [9], and BALL-
View [5], [6]. BALLView is a graphical front-end to the
Biochemical Algorithms Library (BALL) [10], and as such,
it offers direct access to a wide range of modelling func-
tionality, e.g., secondary structure prediction, force field
evaluations (Amber, Charmm, MMFF94), structure mini-
mization, or molecular dynamics simulation, to name but
a few. These modelling methods are complemented with
all standard visualization modes for molecules (lines, stick,
ball and stick, Van-der-Waals, SES, SAS, backbone, cartoon,
ribbon) and their properties (e.g. HBond-models, force vi-
sualization, volume rendering, contouring, etc). BALLView
allows visualization models to be easily implemented and
added to the system. All these models can be combined with
a variety of coloring schemes (e.g. by element, by residue
index, or by external properties read from a grid).

BALLView’s GUI additionally enables the interactive
manipulation and editing of molecules; for instance, small
molecules can be easily drawn on the screen and further
visualized and simulated. Molecules can be read in from
(and exported to) various file formats, or can be directly
downloaded from the appropriate databases right from the
GUI. Finally, BALL’s Python interface is fully embedded
into BALLView, rendering it fully scriptable and easily
extensible at runtime. Furthermore, BALLView’s modern
C++ design makes the system an ideally suited target for
the integration of real-time ray tracing methods.

III. REAL-TIME RENDERING

In computer graphics, rendering is the process of produc-
ing a two-dimensional image of a virtual three-dimensi-onal
scene from a camera perspective. To this end, one has to



Figure 2. Reflections in molecular visualization. Accurate complex
multiple interreflections and reflections from curved objects enabled by
ray tracing.

compute the radiance of the light falling onto the camera’s
sensors, or pixels.

In the real world, light starts its journey from light
sources, bounces off the particles it encounters, and con-
tinues traveling until absorption, eventually reaching the
camera. Thus, an accurate computer simulation of the light
paths from the light sources to the camera sensors would
give a faithful representation of what the camera sees. A
formalization of this process is known as Radiative Transfer
Theory. In the field of computer graphics this theory is often
simplified to account only for light interaction with solid
surfaces, neglecting the contribution of participating media.
This form has been popularized by the well-known rendering
equation [11]:

L(x, ωo) =Le(x, ωo)+ (1)∫
Ω

L(h(x, ωi),−ωi)fr(ωi, x, ωo)cosθi dωi

This model states that the outgoing radiance L from some
surface point x in direction ωo is equal to the self-emitted
radiance Le at the same point and direction plus the radiance
that reaches this point from all possible directions ωi and
is reflected in the direction of interest ωo. The recursive
term L(h(x, ωi),−ωi) yields the incoming radiance from
direction ωi by using the so-called ray tracing operator h,
which returns the first visible point from x in direction ωi.
This radiance is weighted by fr(ωi, x, ωo), which specifies
the reflectance properties of the surface at point x, and cos θi,
which accounts for the orientation of the surface with respect
to the incoming light direction. Figure 3 left depicts this
process.

Most of the existing surface rendering algorithms can be
seen as solutions to this equation, the distinguishing feature
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Figure 3. Principles of ray tracing. The radiance emitted from a
surface point x in direction ωo equals the self-emitted radiance Le in that
direction plus the radiance from all possible directions ωi reflected off to
ωo, weighted by the surface orientation and reflectance properties.

being the accuracy of the possible light interactions.

A. Rasterization

Rasterization algorithms, like the z-buffer or the painter’s
algorithm, try to solve the camera visibility problem, i.e.
finding the closest visible geometry from the camera per-
spective. Most such approaches are limited to projecting the
geometry onto a planar image. On the other hand, they can
robustly handle arbitrary changes in geometry and some al-
gorithms (e.g. z-buffer) have been efficiently implemented in
hardware. However, rasterization is not suited for solving the
full rendering equation, especially for accurate simulation
of secondary lighting effects that require global visibility
information. While rasterizing a single primitive, no global
knowledge about the scene exists and thus complex effects
cannot be computed in a single pass. Over the time, a
number of techniques have been proposed to approximate
shadows, reflection, and refraction. However, such methods
require high graphics expertise to implement, and still trade
off correctness for speed.

B. Ray tracing

Ray tracing based rendering methods [12] determine the
closest visible surface through each pixel by shooting rays
from the camera. In contrast to rasterization, visibility com-
putations are not strictly performed with respect to a plane
and are image-based rather than object-based. This means
that rays can be shot from arbitrary points in arbitrary di-
rections. Moreover, since rays are infinitely thin, ray tracing
can be used to simulate light transport directly based on the
rendering equation, which is a line integral equation. Ray
tracing can naturally handle complex lighting phenomena,
such as soft shadows, reflections, refractions, as well as
full global illumination [13]. Such effects are essential for
enhancing the visual perception of the generated image and
for providing better understanding of the scene structure.
However, ray tracing generally has higher computational



Figure 4. Shadows in understanding of a structural relationship. On the left is an image of N1 Neuraminidase with oseltamivir/Tamiflu (2HU4.pdb)
under direct illumination only. On the right the same scene, this time interactively ray traced with realistic shadows. Notice the relative position of the
coil and the SES surface, distance of the ball-and-stick model and the depth of the binding site, all of which are not apparent under the direct illumination
only.

requirements than rasterization and has thus been used
predominantly for offline image generation.

The tremendous technological advances over the past
decade have enabled ray tracing to achieve real-time perfor-
mance on commodity hardware. State-of-the-art ray tracing
algorithms exploit the thread- and data-level parallelism
provided by modern hardware and utilize highly optimized
acceleration structures [14]–[16] to efficiently find ray/object
intersections. Real-time ray tracing has for the first time en-
abled interactive visualization of advanced secondary light-
ing effects and has thus opened opportunities for unifying
interactive and high quality rendering environments.

IV. INTEGRATION

We have integrated the RTfact real-time ray tracing en-
gine [4] as a rendering backend in addition to the default
OpenGL renderer in BALLView. RTfact is a generic C++
library that utilizes generic programming concepts to deliver
both performance and flexibility, and that can robustly
handle multiple ray tracing configurations simultaneously.
This allows us to use the best suitable algorithms and data
structures for a specific application in order to achieve high
performance. RTfact also directly exposes the ray tracing
functionality to the application, which for example enables
object picking or collision testing.

Full-fledged integration of a ray tracer into a molecular
modeling tool is a considerable challenge. One reason is
that real-time ray tracers are often very rigid, specialized,
and hand-optimized programs. Furthermore, molecular mod-
elling tools often deeply integrate the rasterization pipeline.
Our aim was to integrate ray tracing into BALLView trans-
parently, so that it would be interchangeable with the default
OpenGL renderer.

We created an interface in BALLView which is agnostic
of the render type and handles both the representations and

image display. One reason for this was that ray tracing ren-
derers require a preprocessing phase, where all the objects to
be rendered are already known and ray tracing acceleration
structures are built. This problem was solved by separating
the object handling into two phases. First, a prepare stage
is executed, where all the representations are gathered and
passed on to the renderers. Then, a render phase only tells
the renderers to display whatever representations they have
bufferred. Additionally, such renderers render the image into
a memory buffer, whereas the OpenGL renderer directly
runs on the graphics card. The image produced by the ray
tracer is texture-mapped to a full-screen quad, which is
then rasterized. This both enables unified handling of render
targets and enables leveraging the GPU for post-processing
the final image, such as linear or higher order interpolation
(see Section V-C). In this way, we abstract the rendering
completely from the computational core of BALLView,
allowing all of its visualization methods, coloring schemes,
and simulation techniques to be used in combination with
both the ray tracing and the OpenGL renderers.

V. RESULTS AND DISCUSSION

We demonstrate the key advantages and implications to a
standard workflow that are achieved by the combination of
general real-time ray tracing and a full-featured molecular
modelling tool as described above. Specifically, we address
the degree of image quality, structural, and depth perception
a user can expect in interactive viewing by switching to the
ray tracing paradigm, the level of integration achieved, basic
performance characteristics, and ease of use and publication
image generation.

A. Structure and Depth Perception

Ray tracing naturally simulates accurate light attenuation,
shadows, and reflections. These effects require almost no



Figure 5. Combination of representations. Integration of the ray tracer is done tightly and transparently, allowing the advanced effects reflection,
shadows, light attenuation or transparency to work seamlessly with any combination of available representations, including the cartoon models.

additional effort to implement and are guaranteed to be
precise, unlike similar techniques in rasterization.

Impact of these light effects on depth perception is
demonstrated in Figure 1. On the left, an image without
any light attenuation or shadows is rendered, while on the
right an interactively ray traced image is given. We can see
that without the light attenuation and shadows, any sense of
depth is completely lost.

Similar situation is depicted on Figure 4. Here, we see
how the presence of shadows helps to clarify the relationship
of the coils and SES surfaces, as well as position of the
ligand in the binding pocket.

Finally, Figure 2 demonstrates the use of reflections in
molecular visualization.

Stereoscopic imaging is often used in molecular modeling
to enhance depth and spatial perception. Real-time ray
tracing techniques are fully compatible with stereoscopy and
we have implemented stereo support in BALLView.

B. Integration of different representations

The tight integration of modeling and rendering and the
choice of triangle-based ray tracing, brings the renderer
entirely into the molecular scene, making it aware of all
the representations and their hierarchy. This enables the
ray tracer to treat all the triangle-based representations in
the same manner. An important consequence of this is that
all the advanced effects presented in the previous section
apply automatically and consistently to all representations:
for example, the cartoon model can cast shadows on the
SES surface, which in turn shadows a ball-and-stick model.
Figure 5 shows such a situation. This is in strong contrast to

previous applications of ray tracing to molecular visualiza-
tion, where only selected representation(s) were ray traced.
Specifically, the very popular cartoon model was the one
most often neglected.

C. Performance

In this section we would like to stress out that all of the
above mentioned effects are rendered interactively in our
system and provide an analysis of the performance with
respect to the scene complexity and number of processors.

Our ray tracer is a highly multi-threaded application,
which can take advantage of all CPU cores available in
the system, requiring no user intervention. This means that
the ray tracer automatically speeds up when moved to a
machine with higher number of cores. If desired, however,
the user can specify the number of threads at runtime, e.g. to
save shared computing resources. In contrast to rasterization,
our method is also independent on the graphics card used.
This is advantageous, e.g., in server-based rendering, as CPU
clusters are still more reachable than GPU clusters.

Figure 7 on the right, shows how the ray tracing per-
formance scales with the number of cores in the system.
We can see that the scaling is linear at the beginning and
slightly declines with increasing number of cores. In the end
it provides about 5x speed-up for 8x times the amount of
cores. This makes good use of all the available resources
and provides very good performance/price ratio.

The final issue discussed here is the scaling of the render-
ing system with the scene complexity. The optimal goal is
to achieve a better than linear dependency of the rendering
times on the amount of geometry we are displaying. Imple-



Figure 6. Easy to use user interface. Adding the advanced ray tracing effects like reflections, for example, is as simple as dragging a material reflectivity
slider between 0 and 1, giving a smooth transition between diffuse material and perfect mirror.

menting this functionality in rasterization-based algorithms
is, similarly to high-order effects, quite tedious, error prone,
and requires high expertise. On the other hand, real-time ray
tracing naturally relies on hierarchical tree representations to
achieve high-speed rendering. These structures automatically
give the desired scaling behaviour, as each ray is checked
for intersection only with objects in its vicinity.

The results are summarized in Figure 7 on the left. It
demonstrates that our implementation scales logarithmically
with the amount of geometry being displayed. For further
details please refer to the caption of Figure 7.

D. Ease of use

One important drawback of previous ray tracing solutions
in molecular visualization was the lack of integration with
day-to-day workflow and/or difficult parameter setup. Espe-
cially off-line image or movie generation using external ray
tracers is very tedious, both due to high rendering times and
the complexity of the scene preparation.

In our system, the user will only notice several new op-
tions, while receiving automatically all the advanced effects
mentioned above in standard online rendering viewport. See
for example Figure 5. All parameters, such as light sources,
colors, or materials, can be changed on the fly and the results
of the changes are directly reflected on the screen (Figure 6)
In this way, producing publication-quality pictures becomes
nearly trivial and does not require more skill or experience
than using a molecular viewer in the first place. Indeed, all
the images shown in this paper have been generated by either
taking a screenshot of a running BALLView instance, or by
having BALLView exporting its current display into a file.

VI. CONCLUSION

One of the most important aims in molecular visualization
is a faithful and easily interpretable depiction of the struc-
tural relationships in biomolecular systems. In this work, we
present a tight integration of general real-time ray tracing
functionality into a fully-featured molecular viewing and
modelling application.

We have shown that the classical paradigm in molecu-
lar visualization – rasterization for interactive display, ray
tracing for offline creation of high-quality images with full
visual cues for spatial perception – can indeed be changed
to the ’best of both worlds’, where we have both interactive
and high-quality visualization with all the advanced effects
at hand for day-to-day routine work. The added information
due to the correct shadows, advanced lighting, and even
cleverly used reflections can hardly be overemphasized,
especially when used in an interactive setup. Moreover,
this functionality is directly integrated into the standard
workflow, making its use nearly trivial and natural.

However, perhaps the most exciting fact is that with the
real-time ray tracing we have only started to explore the
whole new world of opportunities and we strongly believe
that a new class of interaction and visualization paradigms
can be designed, including, e.g., triangle-less rendering of
specific representations, volume visualization, or even better
use of global illumination.
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