N-BVH: Neural ray queries with bounding volume hierarchies
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Figure 1: N-BVH provides a compressed representation for ray queries against complex 3D assets, integrating seamlessly into
standard ray-tracing pipelines. Here, the rendered image (left) combines responses from our neural model (top right) with
classical BVH/triangle ray queries (middle right), providing a faithful approximation to the original scene. Our model achieves
a compression rate of 42x for the subset of geometry it represents, and 13X over the entire scene.

ABSTRACT

Neural representations have shown spectacular ability to compress
complex signals in a fraction of the raw data size. In 3D computer
graphics, the bulk of a scene’s memory usage is due to polygons
and textures, making them ideal candidates for neural compression.
Here, the main challenge lies in finding good trade-offs between ef-
ficient compression and cheap inference while minimizing training
time. In the context of rendering, we adopt a ray-centric approach to
this problem and devise N'-BVH, a neural compression architecture
designed to answer arbitrary ray queries in 3D. Our compact model
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is learned from the input geometry and substituted for it whenever
a ray intersection is queried by a path-tracing engine. While prior
neural compression methods have focused on point queries, ours
proposes neural ray queries that integrate seamlessly into standard
ray-tracing pipelines. At the core of our method, we employ an
adaptive BVH-driven probing scheme to optimize the parameters
of a multi-resolution hash grid, focusing its neural capacity on the
sparse 3D occupancy swept by the original surfaces. As a result, our
N-BVH can serve accurate ray queries from a representation that is
more than an order of magnitude more compact, providing faithful
approximations of visibility, depth, and appearance attributes. The
flexibility of our method allows us to combine and overlap neural
and non-neural entities within the same 3D scene and extends to
appearance level of detail.
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1 INTRODUCTION

Physically based rendering engines rely on a single fundamental
operator to simulate light transport in a 3D scene: ray tracing. For
realistic scenes encompassing complex surface meshes (see Fig. 1),
ray queries are accelerated using a hierarchical data structure that
allows skipping empty space efficiently when tracing the rays in
search for an intersection. Nevertheless, the memory footprint of
the scene and of this structure is often challenging to manage, given
the limited space available on graphics processing units (GPU).
Recently, neural methods have demonstrated impressive ability
to compress data, in particular spatial samplings, yet have been
mostly designed to serve point queries, such as evaluating a shape
represented via its signed distance function. In this paper, we pro-
pose a new neural representation for 3D scene models designed
specifically for ray queries that blends naturally into a typical ray
tracer. Our key observation is that any neural compression model
can be optimized efficiently as long as it is trained on samples that
live close to the signal of interest. In our case, 3D surfaces are the
signal of interest and are commonly structured in a bounding vol-
ume hierarchy (BVH) to speed up their intersection test. We take
inspiration from this very standard setup and propose to optimize
a state-of-the-art neural data structure by embedding it into such a
BVH; we call our new structure a Neural BVH or N-BVH.

At training time, we use the scene’s BVH as a probing machine
to generate ray queries/responses training pairs only close to the
surfaces for our neural model to learn. At rendering time, our
N-BVH inherits the natural empty-space skipping behavior of a
standard BVH and serves neural ray queries, preventing full, deep
BVH traversal and hence storage. Our N-BVH can be used con-
currently with a standard BVH, to overlap neural and non-neural
assets in a single scene. Its training takes only a few minutes even
on large scenes and its runtime response includes visibility, depth,
and appearance attributes for arbitrary rays. Additionally, N-BVH
proposes a simple level-of-detail (LoD) scheme, by refining multiple
error-driven cuts in its underlying tree structure and optimizing
the neural model concurrently at all their nodes.

Contributions. We introduce the following novel elements:

o A new hybrid neural data structure, N-BVH, which encodes
signals such as depth, normal, or appearance attributes so
that they can be efficiently queried by a ray, and focuses its
neural capacity on the sparse subset of 3D space spanned by
surfaces;
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o Aneural ray-intersection query mechanism (Section 4) which
can serve any path tracer with faithful intersection approxi-
mations;

o A fast training scheme driven by a coarse-to-fine tree-cut
optimization (Section 5.1), which automatically concentrates
the training where the error is highest; this scheme provides
a deep (resp. shallow) hierarchy where the geometry is hard
(resp. easy) to learn and is oblivious to the actual tessella-
tion of the input meshes, e.g., a densely subdivided plane is
perceived as simple;

o The ability to jointly define multiple adaptive neural levels-
of-detail (Section 5.3), specifying a target node count for
each related tree cut.

Basing N-BVH on hash grids copes ideally with BVH empty-space
skipping: typically, the vast majority of the backpropagation gra-
dients are non-zero during training even if only a small amount
of the scene’s volume is actually sampled. This sparse adaptation
translates into encoded points landing close to the geometry, in-
ducing faster and easier learning at a reduced memory cost. This
allows for a very lightweight hash grid encoding—in the order of a
few megabytes—where we favor BVH depth over neural capacity
growth.

Application spectrum. We demonstrate the benefit of our N-
BVH with two application scenarios: hybrid path tracing (Section 7)
which combines neural and non-neural assets in a single pipeline;
and neural appearance prefiltering (Section 8) which alleviates mem-
ory consumption and render times while providing equal or lower
prefiltering error on large complex models appearance.

The source code of our implementation is publicly available at
https://github.com/WeiPhil/nbvh.

2 RELATED WORK

Neural implicit representations. Neural radiance fields (NeRF)
[Mildenhall et al. 2020] and their recent adaptations to interac-
tive and real-time graphics [Miiller et al. 2022] use implicit neural
representations forming neural fields [Xie et al. 2022] for novel
view synthesis. Neural representations’ adaptability, coupled with
sparse [Miiller et al. 2022] and compressed [Takikawa et al. 2022]
coordinate encodings, efficiently store high-dimensional functions,
representing high-frequency content in spatial and angular do-
mains. The necessity for accelerated coordinate-based representa-
tion has mainly been explored in NeRF-related techniques where
the dense sampling of a volume using ray-marching can lead to
a prohibitively high number of network inferences. The (shallow)
multi-layer perceptron (MLP) involved in the process is responsible
for a large part of the inference cost which Hedman et al. [2021]
proposes to avoid by accumulating features along rays to offload
the MLP. Yang [2023] also showed that a tree-structured MLP can
further improve compression fidelity. Recently, Wang et al. [2023]
showed that further speed and accuracy can be gained with an
adequate empty-space skipping strategy. Not only does this signif-
icantly reduce the number of network queries at runtime, but it
can drastically improve the reconstructed signal as sampling is in-
creased near the high-frequency content of the scene. Our approach
is similar in spirit and relies on traditional scene acceleration data
structures to provide an efficient empty-space skipping strategy.
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Figure 2: Our lightweight N-BVH is a shallow hierarchy whose leaf nodes simply store bounds within which we search for ray
intersections by querying a neural geometry representation. The leaves (in purple outlines) represent a cut in a classical BVH
over the input geometry; we optimize the cut by iteratively splitting the leaves with largest inference error. After each splitting
step we train our neural model within the cut-node bounds by sampling random rays in the scene.

However, we are not restricted to NeRF applications as we aim at
learning general ray-intersection queries which are at the core of
many rendering applications.

Geometric simplification. Silhouette and shape-preserving dec-
imation [Garland and Heckbert 1997; Hoppe 1996; Kobbelt et al.
1998] are widely used, often with artist supervision, in produc-
tion environments. However, they can fail to accurately preserve
the appearance of the original asset when high compression rates
are demanded or the underlying geometry does not exhibit the
geometric characteristic the algorithms are tailored to [Lindstrom
2000; Rossignac and Borrel 1993; Schaefer and Warren 2003]. Point-
based [Pauly et al. 2002] or statistical simplification [Cook et al.
2007] supports less structured shapes, and hybrid volume/surface
approaches [Gobbetti and Marton 2005; Loubet and Neyret 2017]
have been proposed but they usually focus on prefiltering rather
than reducing the memory footprint of the scene.

Neural compressed geometric reconstruction. A large body of work
has shifted toward representing geometry as a signed distance field
(SDF) rather than a more typical triangle representation. Park et al.
[2019] were among the first to represent SDFs as deep neural net-
works, though were able to learn only low-frequency signals and
at a high inference cost. Later, Takikawa et al. [2021] demonstrated
how coordinate-based networks, implemented as an octree feature
volume, allow much higher frequency SDFs to be reconstructed
while also providing continuous levels of detail at a low memory
footprint. As an alternative geometric representation, ACORN [Mar-
tel et al. 2021] proposes another type of coordinate-based network
for learning a highly compressed and accurate occupancy field
represented by an optimized space partitioning. While providing
accurate reconstruction, it is specifically designed to answer point
queries, which prevents its application to many rendering domains.
The direct reconstruction of compressed triangle-based representa-
tion is a challenging problem even for coordinate-based networks
as the underlying data is inherently discrete. Weier et al. [2023]
propose to compress and represent the prefiltered appearance while
taking into account the correlation arising in structured geometry

using a sparse voxel grid paired with a hash grid for effective com-
pression of the learned signal. Feng et al. [2022] tackle the problem
of learning visibility and depth for arbitrary ray queries by propos-
ing a ray-foot parameterization that prevents aliasing of different
rays sharing the same intersection, thereby improving the learning
process. However, their approach does not compress the geometric
representation as it requires two large MLPs for inference, making
it impractical for real-time use. Furthermore, the ability of their
method to reconstruct complex high-frequency geometric signals
is limited by the network’s capacity. NeuralVDB [Kim et al. 2022]
compresses the volume of a 3D scene with a set of overlapping do-
mains, each equipped with an MLP mapping local voxel coordinates
to voxel data. Its hierarchy is shallow and wide, and the method
offers a significant compression ratio for point-queried volume data
compared to previous iterations of the VDB representation.

Hybrid neural path tracing. The work of [Fujieda et al. 2023] fo-
cuses on optimizing ray-tracing performance through the learning
of visibility. While their representation achieves real-time inference
with a low memory footprint, their model only handles shadow ray
queries and overfits to both camera and light positions, preventing
any type of relighting or interactivity.

3 METHOD OVERVIEW

We propose a compact learnt representation for 3D surfaces with
support for efficient ray-intersection queries (see Fig. 2). This rep-
resentation replaces the input geometry with a coordinate-based
neural model that we sample along rays to infer intersection point,
surface normal, and appearance. Our model is based on a multi-
resolution hash grid [Miiller et al. 2022] which excels at compactly
representing sparse but complex 3D signals.

Neural ray inference is subject to inherent reconstruction error.
Beyond the capacity of the neural model, the parameterization of
its input strongly influences its performance. Consequently, prob-
ing the model at sample points close to the geometry helps it to
efficiently store intersection information. Dense sampling along
the ray achieves high accuracy but is prohibitively costly; the main
challenge is thus to sample the model sparsely but close to the
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3D surface. To that end, we take inspiration from classical ray-
intersection acceleration to cluster geometry in bounding boxes
and probe the model only within the ray-box intersection intervals.
Organizing these boxes into a bounding volume hierarchy, dubbed
N-BVH, recovers the benefits of traditional acceleration structures,
namely (approximate) front-to-back probing for early termination
and efficient empty-space skipping.

Note that we use a single global neural model encompassing
the entire geometry, with a BVH to provide efficient training and
ray inference in the near-field of the model. Since no geometrical
primitives, no textures, and only a shallow BVH need to be stored,
our method achieves significant compression rates.

We begin by describing our representation and the practical need
for its adaptive probing (Section 4). We then present our N-BVH
structure and its error-driven construction, which we extend to
support level-of-detail and further accelerate inference (Section 5).

4 NEURAL RAY QUERY

Given a set of geometric elements and their bounding box, we train
aneural model to answer intersection queries for rays that intersect
the box. Since our queries are low-dimensional, we adopt the cur-
rent state-of-the-art approach which consists in combining spatial
features with a small fully connected decoding module. Below we
detail the encoding of our queries, our neural model, as well as its
inference and training pipelines.

Motivation. The simplest way to parameterize our query is via
the ray-box entry and exit points; that is, to learn features on the
bounding box surface. Unfortunately, this encoding exhibits poor
correlation with the signal being learnt, i.e., the ray-intersection
point. The intuition is that it stores information far away from the
signal, which causes blur and loss in accuracy. We illustrate this
behavior in the inline figure, where we focus on the yellow ray entry
point (the argument for the exit
point is analogous). On the left,
we see that rays going through
this point have vastly different
intersections, and the model is vy
forced to aggregate (i.e., average)
information across all of them at the (yellow) encoding point. Mov-
ing the encoding point inwards (middle subfigure) brings it closer
to the surface where the ray-intersection points correlate more with
one another. The ideal encoding location is then the intersection
itself where we need to learn information only about that one point.

L

Encoding, inference & training. In practice we obviously do not
know the intersection location—it is what we seek to compute;
we therefore resort to sampling the ray-box intersection interval
at several locations which parameterize our query. We collect a
set of features for each and decode the vector of concatenated
features via a small multi-layer perceptron (MLP) to obtain the
intersection response. The concatenation order here is critical as
it encodes the ray’s direction. The features are stored in a spatial
multi-resolution hash grid [Miiller et al. 2022]. We illustrate this
inference scheme in Fig. 3. We train the model by sampling the space
of potential rays that intersect a node. For each ray, we (i) sample
its origin uniformly within the 50%-inflated scene bounding box,
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Figure 3: Our neural ray query pipeline. We sample uni-
formly along a given ray-box intersection interval and at
each point collect features from a multi-resolution hash grid.
The concatenated features are fed to an MLP to obtain a recon-
structed signal (visibility, intersection, normal, appearance).
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Figure 4: A surface textured with a square checkerboard,
observed orthographically at a 45° angle. Reconstruction
quality is high when our neural representation is probed
close to the surface. Increasing the sampling rate along rays
reduces error, but at proportionately higher inference cost.

(ii) sample a uniform direction, and (iii) query our model. The
output is compared to the ground truth—obtained by intersecting
the actual geometry, and the measured loss is back-propagated to
the model’s learnable parameters which are optimized via gradient
descent. The loss depends on the specific signal being inferred—
visibility, intersection, normal, etc.; we discuss the losses we use in
Section 5.2.

Sampling & reconstruction quality. Our ray encoding is obtained
via stratified point-sampling along the ray (see Fig. 3, left). We
observe that to obtain accurate reconstruction it suffices that one
of these points lies close to the surface, as the MLP learns to extract
the relevant features from the concatenated vector. To maintain
good accuracy we thus need to probe the model close to the surface.
A naive way to achieve this is to increase the sampling rate along
the ray, as we demonstrate in Fig. 4. Unfortunately, denser sampling
also increases inference time, to query the features from the grid
and process them. Our N-BVH structure addresses this challenge.
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Figure 5: Increasing the number of N-BVH leaf nodes consis-
tently improves the reconstruction quality. It also improves
performance on this scene with low depth complexity where
at most one neural inference per ray is needed. The top row
visualizes the average training loss per node in false color.

5 NEURAL BOUNDING VOLUME HIERARCHY

Scaling up to large and complex scenes calls for a sampling scheme
that has the ability to sample sparsely but close to the geometry.
To this end, we draw from decades of ray-tracing acceleration
research: We can avoid intersection queries along ray intervals
known to be traversing empty space. We split the input geometry
into smaller, simpler pieces, enclosing each in a tight bounding box.
Probing/training our model then need only consider ray segments
inside these smaller boxes. Organizing the boxes into a bounding
volume hierarchy (BVH) achieves our goals: it provides front-to-
back ray traversal, empty-space skipping, and probing the model
closer to the geometry. This lightweight structure is contained
within the bounds of our neural model. We call it neural BVH, or
N-BVH.

Inference for a given ray proceeds by traversing the N-BVH and
querying the neural representation upon reaching a leaf node as
in Fig. 3. The number of neural queries per ray is thus equal to the
number of leaf nodes encountered before finding an intersection.
In Fig. 5 we demonstrate that a shallow N-BVH already drastically
improves the reconstruction compared to using a single neural
node.

We illustrate the structure of our bounding hierarchy in Fig. 2. It
resembles that of a classical BVH—the difference is in the depth and
the leaf nodes. A classical BVH is usually deep, and its leaves contain
geometric primitives. In contrast, our N-BVH is a very lightweight
structure: it is shallow (1-2 orders of magnitude fewer nodes), and
its leaves are hollow bounding boxes over larger geometric clusters
that are represented implicitly by our neural ray-query model. That
model dominates the memory footprint of our combined represen-
tation. We next describe how we construct our N-BVH.

5.1 Error-driven construction

We want our N-BVH to yield uniform inference error throughout
the scene, i.e., its leaves’ error to be roughly equal. We adopt a
top-down construction approach which alternates between model
training and node splitting.
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Base-BVH cut optimization. Instead of building a bounding vol-
ume hierarchy from scratch, we leverage the structure of the readily
available input-geometry BVH, or base BVH. This relieves us from
requiring explicit access to the geometry and reduces our task to
finding a cut in this BVH. We optimize the cut iteratively starting
from the root. In each step, we first train our neural model within the
bounds of the nodes along the current cut for a number of iterations
(detailed in Section 5.2). We then expand the cut by splitting the
nodes with largest error, replacing each with its two children. The
number of training iterations between consecutive cut-expansion
operations increases progressively by a user-specified factor, and
so does the number of node splits (as the tree grows bigger, and
the cut longer). We terminate when a target node count is reached.
The nodes along the base-BVH cut then become the leaf nodes of
our N-BVH for which we run one final, longer round of training.

Node error. The error introduced by approximating a region in
space (i.e., a node’s content) with our representation is the product
q - p of the node’s training loss q and the probability p of a random
ray hitting it. The loss we discuss in Section 5.2 below; the probabil-
ity is proportional to the node’s surface area, though we estimate it
by the fraction of training rays that hit the node, which gives us the
flexibility to adjust the ray distribution (see Section 5.2). In our tests,
ranking the nodes by the raw ¢ - p product caused overly aggressive
splitting of large and/or high-loss nodes, leading to unbalanced
deep trees and low performance. We therefore use a ranking heuris-
tic that dampens the error logarithmically: r = 21log g+log p, where
the additional factor 2 puts more weight on the loss to discourage
splitting large, low-loss nodes too often.

Figure 5 shows a few N-BVH trees built using the ranking crite-
rion r to select the nodes to be split. In the supplemental document,
we confirm on a complex mesh that fixed-depth, uniform node
splitting yields worse reconstruction.

5.2 Node training and losses

To train our neural model, we sample rays uniformly inside the
(inflated) root node, as described in Section 4, and intersect them
against the nodes in the current base-BVH cut. We need to train
the neural model only within cut-node bounding boxes. Below we
describe how we adjust the training to focus on high-error nodes
and how we learn the different inference signals.

Ray distribution. The goal of our N-BVH construction is to
achieve spatially uniform inference error. Besides node splitting, we
employ two techniques to make better use of our finite training bud-
get. First, for each ray, we train only the first leaf node it intersects,
which focuses the effort on more visible nodes. The intersected
node is trained only with probability max(r/rmax, 0.005), where r
is that node’s error (Section 5.1) and ryay is the largest error in the
cut.

Visibility. The visibility along a ray (segment) can be defined
as a binary classification problem. We use a sigmoid activation,
thresholding the output against 0.5, and a binary cross-entropy loss
which shows better convergence than a typical L, loss [Simard et al.
2003]. Visibility (i.e., presence of intersection) is the easiest signal
to learn, and we use it during training as an indicator whether inter-
section information (depth, normal, etc.) should be learnt for each
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ray segment. If the ground-truth visibility is 1 (i.e., no intersection),
we set the losses for all other data to zero. This ensures that we do
not learn unnecessary intersection information.

Intersection point. For the intersection location, we have the
choice between learning the 1D distance
along the ray or the 3D location directly. Fur-
thermore, each of these can be learned locally,
i.e., relative to the node’s extent, or globally.
We compare these four options in the inline
figure. We find that locally learning the dis-
tance, with an L, loss, consistently achieves
the highest quality. We attribute this behav-
ior to the fact that a 1D signal is easier to
learn/represent than a 3D one; constraining
the signal to the unit interval also reduces its
variation.

Position Distance

Global

Local

Auxiliary intersection data. In our applications, the auxiliary
intersection information that we learn are normal and albedo (the
other BSDF parameters are fixed by the user). We use a relative
Ly loss for the albedo, which we found to perform better than a
regular Ly loss, even though the albedo signal varies between 0 and
1. For the normal, we use an L loss.

Combined loss. When using our representation in a standard
rendering pipeline, e.g., our hybrid path-tracing application, we
need to infer all four signals discussed above. The combined training
lossweuseis L = 2Lvisibility+2Ldistance +Lnormal +Lalbedos with more
weight to visibility and distance for better geometric reconstruction.

5.3 Level of detail

Our representation can be trained simultaneously at different scales,
or levels of detail (LoD). We apply a simple top-down approach to
define multiple base-BVH cuts during N-BVH construction, each
defining an LoD. Since our split scheduling increases the number
of tree-cut nodes exponentially, we register a new LoD at regular
training iteration intervals. This results in a roughly linear increase
in N-BVH depth between LoDs. During training, we randomly
select a tree cut and train its nodes.

6 IMPLEMENTATION

We implemented our method in a fully software-based CUDA wave-
front path tracer. For training and inference, we use the tiny-cuda-nn
library [Miiller et al. 2022] with half-precision scalars. All our ex-
periments are performed on an NVIDIA RTX 3090 GPU, except for
neural prefiltering (Section 8), which is run on an NVIDIA RTX
3080 GPU to match the timings of Weier et al. [2023]. Further im-
plementation details and pseudo-code of our inference pipeline can
be found in our supplemental document.

BVH construction. Since our N-BVH construction requires direct
access to the base BVH, we cannot leverage hardware-accelerated
construction and traversal. We construct that BVH on the CPU
using a sweeping SAH builder [Stich et al. 2009], upload it to the
GPU, and traverse it in a dedicated CUDA kernel.

Neural model & training. In all our experiments, we perform gra-
dient descent in batches of 218 rays and employ the Adam optimizer
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[Kingma and Ba 2014] with default hyper-parameters and a learn-
ing rate of 0.01. The output MLP comprises 4 hidden layers, each
containing 64 neurons with ReLU activations. The output layer has
sigmoid activation for all ray-query outputs, except for the normal
for which a linear activation has shown improved reconstruction
quality. The hash grid contains 8 levels, starting from a base res-
olution of 8% to a maximum resolution of 10243, with 4 features
per level. To control the network’s memory footprint, we vary only
the hash-map size. In scenes where the BVH nodes have extremely
thin bounding boxes, training-time node intersection can be subject
to floating-point errors. To alleviate this issue, we inflate N-BVH
nodes slightly, following Weier et al. [2023].

7 APPLICATION: HYBRID PATH TRACING

The most direct use of our method is to replace traditional ray-
tracing operations for large assets with our N-BVH, to reduce
the overall memory footprint of the scene. We use a two-level
hierarchy where the top-level acceleration structure (TLAS) holds
several bottom-level structures (BLAS) at its leaves. In this hybrid
hierarchy, each BLAS is either a classical BVH or our N-BVH.
Whenever a leaf node in a BLAS is reached, a classical or neural
ray intersection query is performed; both query types yield the
same type of intersection data. The shading frame and BSDF are
instantiated and sampled as usual to determine the next scattering
direction for path tracing.

7.1 Results

In addition to the results presented next, our supplemental video
demonstrates our real-time N-BVH construction and inference
scheme. The results of our ablation and the renders for all our
test scenes can be found in full in the supplemental document and
HTML viewer. To compare rendered images to their ground truths,
we use the FLIP error metric [Andersson et al. 2020].

Reconstruction quality & performance. In Fig. 6 we plot the ren-
dering error of various N-BVH configurations on six scenes. For
each scene, we show renders and error maps for an N-BVH con-
figuration that achieves a good trade-off between render time and
reconstruction quality. Images for the remaining configurations
can be found in the supplemental HTML viewer. These confirm
that render times and reconstruction quality correlate most with
the N-BVH node count, less so with the hash-grid size. Note that
we deliberately select the most complex assets to be represented
neurally; the rest of the scene does not benefit as much from high
compression rates. In Table 1 we also compare performance and
memory footprint to those of a traditional CUDA path tracer.

Compression rate. The main strength of our approach lies in
its ability to compress large and complex scenes into a few tens
of megabytes, while maintaining their usability in a traditional
rendering pipeline. In Fig. 7 we plot the different compression rates
achieved on the scenes from Fig. 6. We distinguish between the
rate of the entire scene and the rate of only the portion represented
by our neural model. On that portion alone we can achieve over
1000x compression rates over the original geometry footprint. On
the entire scene, the compression rates are 5 — 100x. The footprint
reduction is mostly due to the geometry representation, though
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Figure 6: Hybrid path tracing results, rendered at 1920x1080 resolution. On the left, we plot the rendering time of our approach
(which is a function of the N-BVH node count and hash-grid size) with respect to image error. Both the number of nodes in our
N-BVH and the hash-grid size impact performance, the latter however less significantly. On the right, we show the rendered
images and their FLIP error for a chosen configuration (®) that achieves a good performance/quality trade-off. In Table 1 we
compare the rendering times and memory footprint of two configurations (®, ®) to classical (i.e., non-neural) path tracing.
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Table 1: Performance comparison against classical path trac-
ing. Our approach achieves 2-4x higher render times. How-
ever, our representation delivers drastic memory compres-
sion at low error, allowing the rendering of complex scenes
that could not even be uploaded onto low-end GPUs. Re-
ducing the node count of our N-BVH (®) closes the gap to
software path-tracing performance (albeit at a higher error),
showing the flexibility of our approach to adapt to strict
render-time budgets.

Path tracing Our hybrid ® Our hybrid
Scene Time Memory Time Memory FLIP Time Memory FLIP
CHESS 6.6ms 329MB 10ms 36MB 0.057 19ms 37MB 0.019
Bonzarl 28ms 853MB 29ms 181MB 0.069 102ms 186 MB 0.023

ExHIBITION 13ms 2.69GB 14ms 181MB 0.027 34ms 182MB 0.010
AND.RooM 28ms 309MB 31ms 108 MB 0.088 55ms 109MB 0.055
City BLock 24ms 1.55GB  22ms 180MB 0.039 80ms 185MB 0.014
STATUETTE 4.9ms 642MB 3.7ms 10.8MB 0.020 12ms 11.2MB 0.007

Neural-part compression Full-scene compression
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] ] ——
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Figure 7: Memory compression rates achieved on our test
scenes. We keep the N-BVH node counts fixed to those cho-
sen in Fig. 6 (®) and vary the hash-grid size along the hori-
zontal axis. We plot the compression rates achieved on the
neural part only and on the full scene.

textured albedo and normal data are also learned by our model
and contribute to the overall compression. Note that the mammoth
in the EXHIBTION scene has extremely high complexity as it is an
original consolidated 3D scan from the Smithsonian Institute.

Level of detail. A simple application of LoD already improves
the performance of our hybrid path tracing: we switch to a coarser
level in our N-BVH after the primary-ray intersection. Since the
number of leaf nodes to query in the N-BVH can be drastically
reduced, we achieve 1.5-2x faster rendering with only slight in-
crease in reconstruction error. In the supplemental document we
show additional results on the scene from Fig. 1 to demonstrate
the effect on reconstruction quality and render time. Note that no
other hybrid path tracing results in the paper use this LoD strategy.
We do apply an LoD scheme in our neural prefiltering application
(Section 8).

Weier et al.
CiTy BLock 0.08 1 Bonzai
0.040 - 7 nodes (0.2 KB) 1
155 (5 KB) 0.07 ]
0.035 4 1.2k (40 KB) ]
11k (350KB) 0-06 3
0.030 7 —e— 33k (1.1 MB) 1
—e— 73k (23 MB) 0-05 7
0-025 4 —e— 142k * (45 MB) ]
51 s R
: e
2] N— T = 142k
T T T T T ﬁn L B LR LR
0B 25MB 50MB 75MB 100MB 125MB 0 100 200 300

Total memory footprint (hash grid + nodes) Training time (seconds)
Figure 8: Total memory footprint Figure 9: Training time
of our representation vs. render- vs. error. Hash-grid size
ing error. Along each curve we is fixed. After an ini-
vary the hash-grid size; that size tial 1000-iteration cut
impacts the error much less than optimization to reach
the N-BVH node count (which is a set total node count
fixed along each curve and its foot- (indicated on plot), we
print is reported in the legend). plot error over the final
The asterisk indicates the node 5000-iteration training-
count chosen in Figs. 6 and 7 (®).  only stage.

7.2 Ablation study

We next evaluate how the hyperparameters of our model affect its
size, training time, inference cost, and reconstruction quality.

Hash-grid size vs. node count. We observe that the biggest im-
provement in reconstruction quality is achieved by increasing the
number of N-BVH nodes rather than the hash-grid size. Node count
impacts memory footprint to a much lesser degree than the number
of learnable hash-grid parameters. Figure 8 illustrates how increas-
ing the hash-grid size on the CiTy BLock scene has diminishing
returns on reconstruction quality and rapidly plateaus as the neces-
sary neural capacity is reached. All our test scenes exhibit similar
behavior.

Training time. Training our entire pipeline takes only a couple
of minutes. We observe that long training times are not necessary
to achieve good reconstruction quality. What impacts training time
(and error) the most is again the N-BVH node count, since a larger
node count increases the traversal time. In Fig. 9 we fix the hash-
grid size and plot the training times achieved for different node
counts on the BONZAT scene, our geometrically most complex scene.
The same experiment on all our test scenes, with similar results,
can be found in the supplemental document.

Hash-grid utilization. While the leaves of our N-BVH occupy
the 3D space covered by the hash-grid model only very sparsely, the
model’s capacity is still highly utilized thanks to the hash collisions
naturally dispersing encoded queries across its learnable features.
The supplemental document contains a more detailed table compar-
ing the volume occupied by the N-BVH leaves on our test scenes
and the average number of non-zero gradients during training for
different hash-map sizes.
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8 APPLICATION: NEURAL PREFILTERING

Weier et al. [2023] showed that neural appearance prefiltering can
save large amounts of memory while maintaining low perceptual
error. Their method traverses a neural sparse-voxel visibility-only
representation to find the first voxel that reports occlusion along
the ray. Their appearance sparse-voxel network then predicts the
prefiltered appearance (represented as a phase function) for a ran-
domly sampled direction along which the path is continued. We
plug into their pipeline, substituting their visibility grid with our
N-BVH. We keep their appearance network, directly evaluating
their publicly available pre-trained weights.

Improved rendering performance. The neural visibility grid of
Weier et al. [2023] incurs a major performance overhead as it per-
forms inference in each of potentially many traversed voxels in
search for an intersection. Note that they do not require explicit
intersection-distance estimation as their appearance network pre-
filters the occlusion inside a voxel (at a given level of detail).

By replacing their grid with our N-BVH, we drastically reduce
the number of required visibility inferences. This is due to a sin-
gle N-BVH leaf typically covering much larger space than one of
their voxels. Once an intersection is found using our N-BVH, we
only need to identify in which appearance voxel the intersection
took place. We then carefully take into account their voxel-based
path-space formulation to trace secondary rays, which requires the
ray origin to lie on the previously determined appearance-voxel’s
boundary rather than on the intersected surface.

In Fig. 10, we show that our approach achieves similar recon-
struction quality on both structured and unstructured geometry;
the remaining error is mostly due to the inaccuracies in the ap-
pearance network. We matched the seven appearance LoDs with
visibility LoDs in our N-BVH using as many tree cuts. For the Bay
CEDAR scene, our NV-BVH contains 127 nodes at the coarsest level
and 176k nodes at the finest. The ROVER scene requires a much
lower node count, 91 and 21k respectively. Hash-map size is 213
for both scenes. On the right of Fig. 11 we report the render times
and compare them to the authors’ implementation. Theirs includes
a visibility Russian-roulette mechanism to gain a 2 — 3X speed up
over their vanilla implementation. Our approach does not require
such a scheme and still easily yields a 2x speed improvement.

Memory footprint & training. In Fig. 11, we compare the memory
footprint and training times of the two approaches. Our N-BVH
exhibits much faster training and lower memory footprint as we
can aggressively reduce the hash-grid size without loss of quality.

9 DISCUSSION

Our N-BVH delivers intersection distance, normal, and appear-
ance attributes for ray queries. It integrates by design into existing
path-tracing pipelines, and offers control over intuitive trade-offs
(hierarchy depth, neural capacity) to fit various application scenar-
ios. Its performance is output-sensitive, depending on the amount
of allocated storage, the frequency of the scene’s content, and its
self-similarity, rather than on the number of input primitives.

Limitations. The main limitation in our neural ray query model
lies in the assumption of convexity (or concavity) of the geometry
inside a neural node to ensure correct intersection estimation when
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Figure 10: Neural appearance prefiltering comparison. Our
N-BVH method achieves equal or better reconstruction qual-
ity than that of Weier et al. [2023] on both structured and
unstructured geometry at all scales, with faster rendering
and training times, at lower memory footprint (see Fig. 11).
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Figure 11: Training-time and memory-footprint comparison
of our appearance prefiltering method against that of Weier
et al. [2023], at LoD 0 (highest resolution). They use a voxel
grid as a ray-acceleration structure, while we use our N-BVH.
The timing and memory numbers exclude the appearance
network. Rendering times are reported for 1024 resolution.

querying the model with a ray originating within the node’s bounds.
This can lead to incorrect offsets of secondary ray origins when
using a low number of N-BVH nodes; as the tree grows deeper,
the problem disappears since convexity/concavity is ensured in the
limit. In practice, for the scenes we tested, even at a low node count
(1.2k), this issue did not manifest. One existing constraint in our
encoding scheme is the fixed number of encoded points per node.
Although we have identified that three points strike a good balance
between inference speed and reconstruction quality, introducing
an adaptive sampling approach—increasing points in challenging
areas and reducing them in simpler regions—could allow for a more
balanced workload between traversal cost and inference time.

Future work. Our approach can be further generalized. Since we
fit our representation solely based on the result of ray queries, it is
readily applicable to any surface representation that can be inter-
sected. Being based on a standard BVH, it can also inherit future
improvements brought to this primitive partitioning structure. Our
current method prevents compression of dynamic geometry since a
naive solution would require to re-train our representation at every
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Figure 12: Geometric simplification comparison. We apply
classical edge collapse [Garland and Heckbert 1997] and clus-
tering [Schaefer and Warren 2003] to reduce the memory
footprint of two scenes from 42 MB to 550 KB and from 9 MB
to 150 KB respectively. We compare these to our approach
with equal footprint. Our method is more robust to the di-
versity of signals found in a complex 3D scene than these
specialized surface- or spatial-clustering approaches.

frame. Further extending our neural ray-query encoding to handle
dynamic content would be an interesting direction for future work.

Conclusion. N-BVH drastically compresses complex scenes while
maintaining low rendering error, offering graceful degradation as
capacity decreases and blending trivially into classical pipelines. De-
signed to be efficiently queried by rays, our approach can effectively
compress the geometric representation much more accurately than
standard geometric simplification techniques such as edge-collapse
or spatial clustering (Fig. 12). Although we cannot yet compete with
the speed of raw path-tracing algorithms, we enable the rendering
of scenes that would not otherwise fit in memory, and we think
that porting our NV-BVH on the hardware could benefit from fused
neural and hardware ray-tracing operations, i.e., the ability to eval-
uate our neural model on the fly while traversing the tree, avoiding
heavy context switches for each inference.
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