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In this supplemental document we discuss various details related to our
general formulation from the main paper. We start with a description of the
extension of our framework to the a-priori setting (Section 1). In Section 2
we describe a way in which textures can be accounted for in our horizontal
approach, so that mispredictions due to multiplicative (and additive) factors
are eliminated. In Section 3 we describe ways in which the runtime of itera-
tive energy minimization methods can be improved considerably. Notably,
an expression is derived allowing the energy difference due to trial swaps
to be evaluated in constant time (no scaling with image size or kernel size).
In the remaining sections we analyze how current a-posteriori [Heitz and
Belcour 2019] (Section 5) and a-priori [Georgiev and Fajardo 2016; Heitz et al.
2019] (Section 6) state of the art approaches can be related to our framework.
Interpretations are discussed, major sources of error are identified, and the
assumptions of the algorithms are made explicit.

1 A-PRIORI OPTIMIZATION
We extend our theory to the a-priori setting and discuss the main
factors affecting the quality. The quality of a-priori approaches is
determined mainly by three factors: the energy, the search space,
and the optimization strategy. We discuss each of those briefly in
the following paragraphs.

Our energy. We extend the a-posteriori energy from the main
paper in order to handle multiple estimators involving different
integrands:𝑄𝑄𝑄1, . . . ,𝑄𝑄𝑄𝑇 , with associated weights𝑤1, . . . ,𝑤𝑇 :

𝐸(𝑆𝑆𝑆) =
𝑇

∑
𝑡=1

𝑤𝑡 ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄𝑡 (𝑆𝑆𝑆) − 𝐼𝐼𝐼𝑡 ∏︁2 . (1)

In the above 𝑔𝑔𝑔 would typically be a low-pass kernel (e.g., Gauss-
ian), and 𝐼𝐼𝐼𝑡 is the integral of the function used in the estimator𝑄𝑄𝑄𝑡 .
Through this energy a whole set of functions can be optimized for,
in order for the sequence to be more robust to different scenes and
estimators, that do not fit any of the considered integrands exactly.
We note that the derived optimization in Section 3 below is also
applicable to the minimization of the proposed energy.

Search space. The search space plays an important role for the
qualities which the optimized sequences exhibit. A more restricted
search space provides more robustness and may help avoid over-
fitting to the considered set of integrands.

For instance, sample sets may be generated randomly within each
pixel. Then, their assignment to pixels may be optimized over the
space of all possible permutations. This is the setting of horizontal
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methods. If additionally this assignment is done within each dimen-
sion separately it allows for an even better fit to the integrands in
the energy (but may degrade the general integration properties of
the sequence). The scrambling keys’ search space in [Heitz et al.
2019] is a special case of the latter applied for the Sobol sequence.
Constraining the search space to points generated from low-

discrepancy sequences provides further robustness and guarantees
desirable integration properties of the considered sequences. Simi-
larly to [Heitz et al. 2019], we can consider a search space of Sobol
scrambling keys in order for the optimized sequence to have a low
discrepancy.
Ideally, such integration properties should arise directly from

the energy. However, in practice the scene integrand cannot be
expected to exactly match the set of considered integrands, thus
extra robustness is gained through the restriction. Additionally,
optimizing for many dimensions at the same time is costly as noted
in [Heitz et al. 2019], thus imposing low-discrepancy properties also
helps in that regard.
Finally, by imposing strict search space constraints a severe re-

striction on the distribution of the error is imposed. This can be
alleviated by imposing the restrictions through soft penalty terms
in the energy. This can allow for a trade-off between blue noise
distribution and integration quality for example.

Progressive rendering. In order to make the sequence applicable to
progressive rendering, subsets of samples should be considered in
the optimization. Given a sample set 𝑆𝑖 for pixel 𝑖 we can decompose
it in sample sets of 1, . . . , 𝑁 samples: 𝑆𝑖,1 ⊂ . . . ⊂ 𝑆𝑖,𝑁 ≡ 𝑆𝑖 . We denote
the respective images of sample sets 𝑆𝑆𝑆1, . . . ,𝑆𝑆𝑆𝑁 .
Then an energy that also optimizes for the distribution of the

error at each sample count is:

𝐸(𝑆𝑆𝑆) =
𝑇

∑
𝑡=1

𝑁

∑
𝑘=1

𝑤𝑡,𝑘∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄𝑡 (𝑆𝑆𝑆𝑘) − 𝐼𝐼𝐼𝑡 ∏︁
2
. (2)

If𝑤𝑖,𝑘 are set to zero for 𝑘 < 𝑁 then the original formulation is
recovered. The more general formulation imposes additional con-
straints on the samples, thus the quality at the full sample count
may be compromised if we also require a good quality at lower
sample counts.

Choosing samples from 𝑆𝑖 for 𝑆𝑖,1, . . . , 𝑆𝑖,𝑁−1 (in each dimension)
constitutes a vertical search space analogous to the one discussed
in the main paper for a-posteriori methods. The ranking keys’ opti-
mization in [Heitz et al. 2019] is a special case of this search space
for the Sobol sequence.
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Adaptive sampling can be handled by allowing a varying number
of samples per pixel, and a corresponding energy derived from the
one above. Note that this poses further restrictions on the achievable
distribution.

Optimization strategies. Typically the energies for a-priori meth-
ods have been optimized through simulated annealing [Georgiev
and Fajardo 2016; Heitz et al. 2019]. Metaheuristics can lead to very
good minima especially if the runtime is not of great concern, which
is the case since the sequences are precomputed. Nevertheless, the
computation still needs to be tractable. The energies in previous
works are generally not cheap to evaluate. On the other hand, our
energies, especially if the optimizations in Section 3 are considered,
can be evaluated very efficiently. This is beneficial for keeping the
runtime of metaheuristics manageable, allowing for more complex
search spaces to be considered.

Implementation details. Implementation decisions for a renderer,
such as how samples are consumed, or how those are mapped to
the hemisphere and light sources, affect the estimator 𝑄𝑄𝑄 . This is
important, especially when choosing𝑄𝑄𝑄 for the described energies to
optimize a sequence. It is possible that very small implementation
changes make a previously ideal sequence useless for a specific
renderer. It is important to keep this in mind when optimizing
sequences by using the proposed energies and when those are used
in a renderer.

2 TEXTURE DEMODULATION FOR HORIZONTAL
OPTIMIZATION

Our iterative energyminimization algorithms (Alg. 1, Alg. 2) directly
work with the original energy formulation, unlike error diffusion
and dither matrix halftoning which only approximately minimize
the energy. This allows textures to be handled more robustly com-
pared to the permutation approach of Heitz and Belcour.

Reducing misprediction errors. Our horizontal approach relies on
a dissimilarity metric 𝑑(⋅, ⋅) which approximates terms involving
the difference ΔΔΔ due to swapping sample sets instead of pixels. This
difference can be decreased, so that 𝑑 is a better approximation, if
additional information is factored out in the energy: screen-space
varying multiplicative and additive terms. Specifically, if we have
a spatially varying multiplicative image 𝛼𝛼𝛼 , and a spatially varying
additive image 𝛽𝛽𝛽 :

𝑄𝑄𝑄 = 𝛼𝛼𝛼𝑄𝑄𝑄′ + 𝛽𝛽𝛽 (3)

ΔΔΔ′(𝜋) = 𝛼𝛼𝛼 ⊙𝑄𝑄𝑄′(𝜋(𝑆𝑆𝑆)) −𝛼𝛼𝛼 ⊙ 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) (4)
ΔΔΔ(𝜋) =𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) − 𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) =

𝛼𝛼𝛼 ⊙𝑄𝑄𝑄′(𝜋(𝑆𝑆𝑆)) + 𝛽𝛽𝛽 − 𝜋(𝛼𝛼𝛼 ⊙𝑄𝑄𝑄′(𝑆𝑆𝑆) + 𝛽𝛽𝛽),
(5)

we can make use of this in our formulation:

𝐸(𝜋) = ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁22 (6)
⌈︂
𝐸(𝜋) ≤ ∏︁𝑔𝑔𝑔 ∗ (𝛼𝛼𝛼 ⊙ 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) + 𝛽𝛽𝛽) −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁2 + ∏︁𝑔𝑔𝑔 ∏︁1∏︁ΔΔΔ′∏︁2 . (7)

Contrast this to the original formulation where 𝛼𝛼𝛼 and 𝛽𝛽𝛽 are not
factored out:

⌈︂
𝐸(𝜋) ≤ ∏︁𝑔𝑔𝑔 ∗ 𝜋 (𝛼𝛼𝛼 ⊙𝑄𝑄𝑄′(𝑆𝑆𝑆) + 𝛽𝛽𝛽) −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁2 + ∏︁𝑔𝑔𝑔 ∏︁1∏︁ΔΔΔ∏︁2 . (8)

With the new formulation it is sufficient that𝑄𝑄𝑄′(𝜋(𝑆𝑆𝑆)) = 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆))
for ΔΔΔ′ to be zero, while originally both 𝛼𝛼𝛼 and 𝛽𝛽𝛽 play a role in ΔΔΔ
becoming zero. Intuitively this means that screen space integrand
differences due to additive and multiplicative factors do not result
in mispredictions with the new formulation, if the integrand is
assumed to be the same (locally) in screen space.

Comparison to demodulation. In the method of Heitz and Belcour
the permutation is applied on the albedo demodulated image. This
preserves the property that the global minimum of the implicit
energy can be found through sorting. Translated to our framework
this can be formulated as (𝐵𝐵𝐵 is a blue noise mask optimized for a
kernel 𝑔𝑔𝑔):

𝐸𝐻𝐵𝑃(𝜋) = ∏︁𝜋(𝑄𝑄𝑄
′(𝑆𝑆𝑆)) − 𝐼 ′𝐼 ′𝐼 ′ −𝐵𝐵𝐵∏︁22 ≈ ∏︁𝑔𝑔𝑔 ∗ 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) −𝑔𝑔𝑔 ∗ 𝐼 ′𝐼

′
𝐼
′∏︁22 . (9)

We have assumed that 𝛽𝛽𝛽 is zero, but we can also extend the method
to handle an additive term 𝛽𝛽𝛽 as in our case. The more important
distinction is that while the albedo demodulated image𝑄𝑄𝑄′ is used
in the permutation, it is never re-modulated (𝛼𝛼𝛼 ⊙ ⋅ is missing). Thus,
this does not allow for proper handling of textures, even if it allows
for modest improvements in practice. An example of a fail case
consists of an image 𝛼𝛼𝛼 that is close to white noise. Then the error
distribution will also be close to white noise due to the missing 𝛼𝛼𝛼 ⊙⋅
factor. More precisely, even if 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) − 𝐼 ′𝐼 ′𝐼 ′ is distributed as 𝐵𝐵𝐵, this
does not imply that 𝛼𝛼𝛼 ⊙ 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) − 𝐼 ′𝐼 ′𝐼 ′ will be distributed similarly.
Dropping 𝛼𝛼𝛼 ⊙ ⋅ is, however, a reasonable option if one is restricted
to sorting as an optimization strategy.

We propose a modification of the original approach (and energy)
such that not only the demodulated estimator values are used, but
the blue noise mask 𝐵𝐵𝐵 is also demodulated (Fig. 7). To better under-
stand how it is derived (and how 𝛽𝛽𝛽 may be integrated) we study a
bound based on the assumption that 𝛼𝑖 ∈ (︀0, 1⌋︀, and ΔΔΔ′ = 0

𝐸(𝜋) = ∏︁𝑔𝑔𝑔 ∗ (𝛼𝛼𝛼 ⊙ 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) + 𝛽𝛽𝛽) −𝑔𝑔𝑔 ∗ 𝐼 ′𝐼 ′𝐼 ′∏︁22 ≈ (10)

∏︁𝛼𝛼𝛼 ⊙ 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) + 𝛽𝛽𝛽 − 𝐼 ′𝐼 ′𝐼 ′ −𝐵𝐵𝐵∏︁22 = (11)

∑
𝑖

𝛼
2
𝑖 ((𝜋(𝑄𝑄𝑄

′(𝑆𝑆𝑆)))𝑖 +
𝛽𝑖 − 𝐼 ′𝑖 − 𝐵𝑖

𝛼𝑖
)
2
≤ (12)

⨄︁𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) + 𝛽𝛽𝛽 − 𝐼 ′𝐼 ′𝐼 ′ −𝐵𝐵𝐵
𝛼𝛼𝛼

⨄︁
2

2
. (13)

The global minimum of the last energy (w.r.t. 𝜋 ) can be found
through sorting also, since there is no spatially varying multiplica-
tive factor 𝛼𝛼𝛼 in front of the permutation.

Sinusoidal textures. To demonstrate texture handling (multiplica-
tive term𝛼𝛼𝛼), in the top row of Fig. 1, a white-noise texture𝑊 is multi-
pliedwith a sine-wave input signal: 𝑓 (𝑥,𝑦) = 0.5∗(1.0 + sin(𝑥 +𝑦))∗
𝑊 (𝑥,𝑦). The reference is a constant image at 0.5. Heitz and Belcour
proposed to handle such textures by applying their method on the
albedo-demodulated image.While this strategymay lead to amodest
improvement, it ignores the fact that the image is produced by re-
modulating the albedo, which can negate that improvement. Instead,
our horizontal iterative minimization algorithm can incorporate the
albedo explicitly using the discussed energy.
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Fig. 1. We demonstrate the importance of the extension presented in Sec-
tion 2. A high-frequency sinusoidal texture is corrupted by white noise
(leftmost column) multiplicatively (top row) and additively (bottom row).
Contrary to Heitz and Belcour’s method, our optimization distributes error
as a high-quality blue-noise distribution (see the power-spectrum insets).
The reference images for the top/bottom image are respectively a flat grey
and a sinusoidal image.

The bottom row demonstrates the effect of a non-flat signal on
the error distribution (additive term 𝛽𝛽𝛽). Here𝑊 is added to a sine-
wave input signal: 𝑓 (𝑥,𝑦) = 0.5∗ (1.0 + sin(𝑥 +𝑦))+𝑊 (𝑥,𝑦). The
reference image is 0.5 ∗ (1 + sin(𝑥 +𝑦)). Our optimization is closer
to the reference suggesting that our method can greatly outperform
the current state of the art by properly accounting for auxiliary
information, especially in regions with high-frequency textures.

Dimensional decomposition. The additive factor 𝛽𝛽𝛽 can be used to
motivate splitting the optimization over several dimensions, since
the Liouville–Neumann expansion of the rendering equation is ad-
ditive [Kajiya 1986]. If some dimensions are smooth (e.g., lower
dimensions), then a screen space local integrand similarity assump-
tion can be encoded in 𝑑(⋅, ⋅) and it will approximate ΔΔΔ better for
smoother dimensions. If the optimization is applied over all dimen-
sions at the same time, this may result in many mispredictions due
to the assumption being violated for dimensions in which the in-
tegrand is less smooth in screen space (e.g., higher dimensions).
We propose splitting the optimization problem starting from lower
dimensions and sequentially optimizing higher dimensions while
encoding a local smoothness (in screen space) assumption on the in-
tegrand in𝑑(⋅, ⋅) (e.g., swaps limited to a small neighborhood around
the pixel). This requires solving several optimization problems, but
potentially reduces the amount of mispredictions. Note that it does
not require more rendering operations than usual.

3 IMPROVING ITERATIVE-OPTIMIZATION
PERFORMANCE

The main cost of iterative minimization methods is computing the
energy for each trial swap, more specifically the required convolu-
tion and the subsequent norm computation. In the work of Analoui
and Allebach an optimization has been proposed to efficiently eval-
uate such trial swaps, without recomputing a convolution or norm
at each step, yielding a speed up of more than 10 times. The opti-
mization relies on the assumption that the kernel 𝑔𝑔𝑔 is the same in
screen space (the above optimization is not applicable for spatially

varying kernels). We extend the described optimization to a more
general case, also including spatially varying kernels. We also note
some details not mentioned in the original paper.

3.1 Horizontal swaps
We will assume the most general case: instead of just swapping
pixels, we consider swapping sample sets from which values are
generated through𝑄𝑄𝑄 . It subsumes both swapping pixel values and
swapping pixel values in the presence of a multiplicative factor 𝛼𝛼𝛼 .

Single swap. The main goal is to evaluate the change of the energy
𝛿 due to a swap between the sample sets of some pixels 𝑎,𝑏. More
precisely, if the original sample set image is 𝑆𝑆𝑆 then the new sample
set image is 𝑆𝑆𝑆′ such that 𝑆′𝑎 = 𝑆𝑏 , 𝑆′𝑏 = 𝑆𝑎 , and 𝑆

′
𝑖 = 𝑆𝑖 everywhere

else. This corresponds to images:𝑄𝑄𝑄 = 𝑄𝑄𝑄(𝑆𝑆𝑆) and𝑄𝑄𝑄′ = 𝑄𝑄𝑄(𝑆𝑆𝑆′). The
two images differ only in the pixels with indices 𝑎 and 𝑏. Let:

𝛿𝑎 = 𝑄′𝑎 −𝑄𝑎 = 𝑄𝑎(𝑆𝑏) −𝑄𝑎(𝑆𝑎) (14)

𝛿𝑏 = 𝑄
′
𝑏 −𝑄𝑏 = 𝑄𝑏(𝑆𝑎) −𝑄𝑏(𝑆𝑏). (15)

We will also denote the convolved images �̃�𝑄𝑄 = 𝑔𝑔𝑔∗𝑄𝑄𝑄 and �̃�𝑄𝑄′ = 𝑔𝑔𝑔∗𝑄𝑄𝑄′,
and also 𝜖𝜖𝜖 = �̃�𝑄𝑄 − 𝐼𝐼𝐼 . Specifically:

�̃�𝑖 = ∑
𝑗∈Z2

𝑄 𝑗𝑔𝑖−𝑗 , �̃�′𝑖 = �̃�𝑖 + 𝛿𝑎𝑔𝑖−𝑎 + 𝛿𝑏𝑔𝑖−𝑏 . (16)

We want to be able to efficiently evaluate 𝛿 = ∏︁�̃�𝑄𝑄′ − 𝐼𝐼𝐼∏︁2 − ∏︁�̃�𝑄𝑄 − 𝐼𝐼𝐼∏︁2,
since in the iterative minimization algorithms the candidate with the
minimum 𝛿 is kept. Using the above expressions for �̃�′𝑖 we rewrite
𝛿 as:

𝛿 = ∏︁�̃�𝑄𝑄′ − 𝐼𝐼𝐼∏︁2 − ∏︁�̃�𝑄𝑄 − 𝐼𝐼𝐼∏︁2 = (17)

∑
𝑖∈Z2

∏︁�̃�𝑖 − 𝐼𝑖 + 𝛿𝑎𝑔𝑖−𝑎 + 𝛿𝑏𝑔𝑖−𝑏∏︁
2 − ∏︁�̃�𝑄𝑄 − 𝐼𝐼𝐼∏︁2 = (18)

2 ∑
𝑖∈Z2

∐︀�̃�𝑖 − 𝐼𝑖 , 𝛿𝑎𝑔𝑖−𝑎 + 𝛿𝑏𝑔𝑖−𝑏̃︀ + ∑
𝑖∈Z2

∏︁𝛿𝑎𝑔𝑖−𝑎 + 𝛿𝑏𝑔𝑖−𝑏∏︁
2 = (19)

2∐︀𝛿𝑎, ∑
𝑖∈Z2

𝜖𝑖𝑔𝑖−𝑎̃︀ + 2∐︀𝛿𝑏 , ∑
𝑖∈Z2

𝜖𝑖𝑔𝑖−𝑏̃︀+

∐︀𝛿2𝑎, ∑
𝑖∈Z2

𝑔𝑖−𝑎𝑔𝑖−𝑎̃︀ + ∐︀𝛿2𝑏 , ∑
𝑖∈Z2

𝑔𝑖−𝑏𝑔𝑖−𝑏̃︀+

2∐︀𝛿𝑎𝛿𝑏 , ∑
𝑖∈Z2

𝑔𝑖−𝑎𝑔𝑖−𝑏̃︀ =

(20)

2∐︀𝛿𝑎,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑎)̃︀ + 2∐︀𝛿𝑏 ,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑏)̃︀+

∐︀(𝛿2𝑎 + 𝛿2𝑏),𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(0)̃︀ + 2∐︀𝛿𝑎𝛿𝑏 ,𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑏 − 𝑎)̃︀,
(21)

where 𝐶𝑓 ,ℎ(𝑥) = ∑𝑖∈Z2 𝑓 (𝑖 − 𝑥)ℎ(𝑖) is the cross-correlation of 𝑓
and ℎ. We have reduced the computation of 𝛿 to the sum of only 4
terms. Assuming that𝐶𝑔𝑔𝑔,𝑔𝑔𝑔 is known (it can be precomputed once for
a known kernel) and that 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖 is known (it can be recomputed after
a sufficient amount of swaps have been accepted), then evaluating
a trial swap takes constant time (it does not scale in the size of the
image or the size of the kernel).

Multiple accepted swaps. It may be desirable to avoid recomputing
𝐶𝑔𝑔𝑔,𝜖𝜖𝜖 even upon accepting a trial swap. For that purpose we extend
the strategy from [Analoui and Allebach 1992] for computing 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 ,
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where 𝜖𝜖𝜖𝑛 is the error image after 𝑛 swaps have been accepted:

{(𝛿𝑎1 , 𝛿𝑏1), . . . , (𝛿𝑎𝑛 , 𝛿𝑏𝑛)}. (22)

This implies: �̃�𝑛𝑖 = �̃� + ∑𝑛𝑘=1(𝛿𝑎𝑘𝑔𝑖−𝑎𝑘 + 𝛿𝑏𝑘𝑔𝑖−𝑏𝑘 ), and conse-
quently:

𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑥) = (23)

∑
𝑖∈Z2

⎛
⎝
�̃�𝑖 − 𝐼𝑖 +

𝑛

∑
𝑘=1

(𝛿𝑎𝑘𝑔𝑖−𝑎𝑘 + 𝛿𝑏𝑘𝑔𝑖−𝑏𝑘 )
⎞
⎠
𝑔𝑖−𝑥 = (24)

𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑥) +
𝑛

∑
𝑘=1

(𝛿𝑎𝑘𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥 − 𝑎
𝑘) + 𝛿𝑏𝑘𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥 − 𝑏

𝑘)). (25)

This allows avoiding the recomputation of𝐶𝑔𝑔𝑔,𝜖𝜖𝜖 after every accepted
swap, and instead, the delta on the𝑛+1-st swap with trial differences
𝛿𝑎, 𝛿𝑏 is:

𝛿
𝑛+1 = ∏︁𝑄𝑄𝑄𝑛+1 − 𝐼𝐼𝐼∏︁2 − ∏︁𝑄𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (26)
2∐︀𝛿𝑎,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑎)̃︀ + 2∐︀𝛿𝑏 ,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑏)̃︀+

∐︀(𝛿2𝑎 + 𝛿2𝑏),𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(0)̃︀ + 2∐︀𝛿𝑎𝛿𝑏 ,𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑏 − 𝑎)̃︀,
(27)

where 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 is computed from 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖 and 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔 as derived in Eq. (17).
This computation scales only in the number of accepted swaps
since the last recomputation of 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖 . We also note that 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥 −𝑦)
evaluates to zero if 𝑥 − 𝑦 is outside of the support of 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔 . Addi-
tional optimizations have been devised due to this fact [Analoui and
Allebach 1992].

3.2 Vertical swaps
In the vertical setting swaps happen only within the pixel itself,
that is: 𝛿𝑎 = 𝑄𝑎(𝑆′𝑎) − 𝑄𝑎(𝑆𝑎). Consequently, �̃�′𝑖 = �̃�𝑖 + 𝛿𝑎𝑔𝑖−𝑎 .
Computing the difference in the energies for the 𝑛 + 1-st swap:

𝛿
𝑛+1 = ∏︁�̃�𝑄𝑄𝑛+1 − 𝐼𝐼𝐼∏︁2 − ∏︁�̃�𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (28)

∑
𝑖∈Z2

∏︁�̃�𝑛𝑖 − 𝐼𝑖 + 𝛿𝑎𝑔𝑖−𝑎∏︁2 − ∏︁�̃�𝑄𝑄
𝑛 − 𝐼𝐼𝐼∏︁2 = (29)

2 ∑
𝑖∈Z2

∐︀�̃�𝑛𝑖 − 𝐼𝑖 , 𝛿𝑎𝑔𝑖−𝑎̃︀ + ∑
𝑖∈Z2

∏︁𝛿𝑎𝑔𝑖−𝑎∏︁2 = (30)

2∐︀𝛿𝑎, ∑
𝑖∈Z2

𝜖
𝑛
𝑖 𝑔𝑖−𝑎̃︀ + ∐︀𝛿2𝑎, ∑

𝑖∈Z2
𝑔𝑖−𝑎𝑔𝑖−𝑎̃︀ = (31)

2∐︀𝛿𝑎,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑎)̃︀ + ∐︀𝛿2𝑎,𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(0)̃︀. (32)

The corresponding expression for 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 is:

𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑥) = 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑥) +
𝑛

∑
𝑘=1

𝛿𝑎𝑘𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥 − 𝑎
𝑘). (33)

3.3 Multiple simultaneous updates
If the search space is ignored and the formulation is analyzed in
an abstract setting it becomes obvious that the vertical approach
corresponds to an update of a single pixel, while the horizontal
approach corresponds to an update of two pixels at the same time.
This can be generalized further. Let 𝑁 different pixels be updated
per trial, and let there be 𝑛 trials that have been accepted since 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖
has been updated. Let the pixels to be updated in the current trial
be: 𝑎𝑛+11 , . . . , 𝑎

𝑛+1
𝑁 , and the accepted update at step 𝑘 be at pixels:

𝑎
𝑘
1 , . . . , 𝑎

𝑘
𝑁 . Let𝑄𝑄𝑄0 =𝑄𝑄𝑄 be the original image.We define the sequence

of images:𝑄𝑄𝑄𝑘 ∶ 𝑄𝑘𝑖 = 𝑄𝑘−1𝑖 , 𝑖 ⇑∈ {𝑎𝑘1 , . . . , 𝑎
𝑘
𝑁 } and otherwise let 𝑄𝑘

𝑎𝑘
𝑖

be given. Let 𝛿𝑘𝑖 = 𝑄𝑘𝑎𝑘
𝑖

−𝑄𝑘−1
𝑎𝑘
𝑖

. Using the above notation we arrive
at an expression for 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 :

𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑥) = 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑥) +
𝑛

∑
𝑘=1

𝑁

∑
𝑖=1

𝛿
𝑘
𝑖 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥 − 𝑎

𝑘
𝑖 ). (34)

The change in the energy due to the 𝑛 + 1-st update is:

𝛿
𝑛+1 = ∏︁�̃�𝑄𝑄𝑛+1 − 𝐼𝐼𝐼∏︁2 − ∏︁�̃�𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (35)

∑
𝑖∈Z2

∏︁�̃�𝑛𝑖 − 𝐼𝑖 +
𝑁

∑
𝑗=1

𝛿
𝑛+1
𝑗 𝑔𝑖−𝑎𝑛+1

𝑗
∏︁2 − ∏︁�̃�𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (36)

2 ∑
𝑖∈Z2

∐︀�̃�𝑛𝑖 − 𝐼𝑖 ,
𝑁

∑
𝑗=1

𝛿
𝑛+1
𝑗 𝑔𝑖−𝑎𝑛+1

𝑗
̃︀ + ∑

𝑖∈Z2
∏︁
𝑁

∑
𝑗=1

𝛿
𝑛+1
𝑗 𝑔𝑖−𝑎𝑛+1

𝑗
∏︁2 = (37)

2
𝑁

∑
𝑗=1

∐︀𝛿𝑛+1𝑗 , ∑
𝑖∈Z2

𝜖
𝑛
𝑖 𝑔𝑖−𝑎𝑛+1

𝑗
̃︀+

𝑁

∑
𝑗=1

𝑁

∑
𝑘=1

∐︀𝛿𝑛+1𝑗 𝛿
𝑛+1
𝑘 , ∑

𝑖∈Z2
𝑔𝑖−𝑎𝑛+1

𝑗
𝑔𝑖−𝑎𝑛+1

𝑘
̃︀ =

(38)

2
𝑁

∑
𝑗=1

∐︀𝛿𝑛+1𝑗 ,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑎𝑛+1𝑗 )̃︀+

𝑁

∑
𝑗=1

𝑁

∑
𝑘=1

∐︀𝛿𝑛+1𝑗 𝛿
𝑛+1
𝑘 ,𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑎𝑛+1𝑗 − 𝑎𝑛+1𝑘 )̃︀.

(39)

3.4 Implementation details
Leaky energy. Similar to the original paper [Analoui and Allebach

1992], in our extension 𝛿 was computed for a "leaky energy" which
extended the support of the image by convolution. That is reflected
in the fact that the sums are over Z2. To rectify this, the sum needs
to be limited to the support of 𝐼𝐼𝐼 . This would require clamped sums of
the cross-correlation to be evaluated, which can also be precomputed
but requires extra memory. The same holds for the cross-correlation
with 𝜖𝜖𝜖 , where clamped terms are required near the image boundary.

Reflecting boundary conditions. Another desirable property may
be a convolution such that it acts on the image extended to be
reflected at the boundaries - this avoids artifacts near the borders.
This can be achieved by including the relevant terms including
pixels for which the kernel is partially outside of the support of
𝐼𝐼𝐼 . Care must be taken when expressing �̃�𝑖 , however, since it may
include the same updated pixel numerous times (especially if it is
near the border). The same ideas apply for a toroidally extended
convolution.

Further optimizations. Various other strategies have been pro-
posed in the literature for improving the runtime of iterative error
minimization approaches for halftoning.

In our algorithms we usually use a randomized initial state, how-
ever, it is possibly to initialize the algorithms with the result of
a dither matrix halftoning algorithm or error diffusion algorithm
which would result in faster convergence [Analoui and Allebach
1992].
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Another strategy involves partitioning the image in blocks. In-
stead of updating the pixels in raster or serpentine order, the blocks
are updated simultaneously by keeping only the best update per
block in each iteration. This has been reported to run 10+ times
faster [Lieberman and Allebach 1997]. In the same paper [Lieberman
and Allebach 1997], approximating the kernel with box functions
has been proposed, yielding a speed up of 6 times. Similarly, if the
kernel is separable or can be approximated by a separable kernel,
the convolution can also be made considerably faster. A speed-up
of an additional 30 times has been reported in [Koge et al. 2014]
through the usage of a GPU.

Finally, several heuristics related to the order in which pixels are
iterated over have been proposed in [Bhatt et al. 2006].

3.5 Spatially varying kernels
We propose an optimization for spatially varying kernels also. Let
kernel 𝑔𝑔𝑔𝑖 be associated with pixel 𝑖 . Let pixel 𝑎 be updated to a new
value 𝑄′𝑎 , while everywhere else the images match: 𝑄′𝑖 = 𝑄𝑖 , and
𝛿𝑎 = 𝑄′𝑎 −𝑄𝑎 . We denote �̃�𝑖 = ∐︀𝑔𝑔𝑔𝑖 ,𝑄𝑄𝑄̃︀, �̃�′𝑖 = ∐︀𝑔𝑔𝑔𝑖 ,𝑄𝑄𝑄′̃︀ = �̃�𝑖 + 𝑔𝑖,𝑎𝛿𝑎 .
Our goal is to evaluate the change in the energy due to the update:

𝛿 = ∏︁�̃�𝑄𝑄′ − 𝐼𝐼𝐼∏︁2 − ∏︁�̃�𝑄𝑄 − 𝐼𝐼𝐼∏︁2 = (40)

∑
𝑖∈Z2

∏︁�̃�𝑖 − 𝐼𝑖 + 𝑔𝑖,𝑎𝛿𝑎∏︁2 − ∏︁�̃�𝑄𝑄 − 𝐼𝐼𝐼∏︁2 = (41)

2 ∑
𝑖∈Z2

∐︀𝜖𝑖 , 𝑔𝑖,𝑎𝛿𝑎̃︀ + ∑
𝑖∈Z2

∏︁𝑔𝑖,𝑎𝛿𝑎∏︁2 = (42)

2∐︀𝛿𝑎, ∑
𝑖∈Z2

𝜖𝑖𝑔𝑖,𝑎̃︀ + ∐︀𝛿2𝑎, ∑
𝑖∈Z2

𝑔𝑖,𝑎𝑔𝑖,𝑎̃︀. (43)

In the above𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑎) = ∑𝑖∈Z2 𝑔𝑖,𝑎𝑔𝑖,𝑎 may be precomputed for every
𝑎, which yields a function with support supp(𝐶𝑔𝑔𝑔,𝑔𝑔𝑔) = ⋃𝑖 supp(𝑔𝑔𝑔𝑖),
and 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑎) = ∑𝑖∈Z2 𝜖𝑖𝑔𝑖,𝑎 can also be recomputed after enough
updates have been accepted.

Multiple accepted updates. Let a set of accepted updates results in
the differences: {𝛿𝑎1 , . . . , 𝛿𝑎𝑛}. And let 𝜖𝜖𝜖𝑛 be the error image after
the updates. We derive an expression for the efficient evaluation of
𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 :

𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑥) = ∑
𝑖∈Z2

𝜖
𝑛
𝑖 𝑔𝑖,𝑥 = 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑥) +

𝑛

∑
𝑘=1

𝛿𝑎𝑘 ∑
𝑖∈Z2

𝑔𝑖,𝑎𝑘𝑔𝑖,𝑥 . (44)

An efficient computation of 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 can then be achieved if the
function 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥,𝑦) = ∑𝑖∈Z2 𝑔𝑖,𝑥𝑔𝑖,𝑦 is precomputed. Then, at step
𝑛 + 1 the change in energy is:

𝛿
𝑛+1 = ∏︁�̃�𝑄𝑄𝑛+1 − 𝐼𝐼𝐼∏︁2 − ∏︁�̃�𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (45)

2∐︀𝛿𝑎𝑛+1 ,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑎
𝑛+1)̃︀ + ∐︀𝛿2𝑎𝑛+1 ,𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑎

𝑛+1)̃︀. (46)

Multiple simultaneous updates. We derive an expression where
an update consists of changing 𝑁 pixels simultaneously, and we
assume that 𝑛 such updates have been accepted previously. We
denote the differences of the pixels in update 𝑘 : {𝛿𝑘1 , . . . , 𝛿𝑘𝑁 }. The
expression for the change in the energy is given as:

𝛿
𝑛+1 = ∏︁�̃�𝑄𝑄𝑛+1 − 𝐼𝐼𝐼∏︁2 − ∏︁�̃�𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (47)

∑
𝑖∈Z2

∏︁�̃�𝑛𝑖 − 𝐼𝑖 +
𝑁

∑
𝑗=1

𝛿
𝑛+1
𝑗 𝑔𝑖,𝑎𝑛+1

𝑗
∏︁2 − ∏︁�̃�𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (48)

2
𝑁

∑
𝑗=1

∐︀𝛿𝑛+1𝑗 ,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑎𝑛+1𝑗 )̃︀ +
𝑁

∑
𝑖=1

𝑁

∑
𝑗=1

∐︀𝛿𝑛+1𝑖 𝛿
𝑛+1
𝑗 ,𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑎𝑛+1𝑖 , 𝑎

𝑛+1
𝑗 ̃︀.

(49)
Where 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥,𝑦) = ∑𝑖∈Z2 𝑔𝑖,𝑥𝑔𝑖,𝑦 is assumed to be precomputed,

and 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 can be computed as:

𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑥) = 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑥) +
𝑛

∑
𝑘=1

𝑁

∑
𝑗=1

𝛿
𝑎𝑘
𝑗
𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑎𝑘𝑗 , 𝑥). (50)

4 RELATIONSHIP TO PREVIOUS WORK
We show that the recent publications [Georgiev and Fajardo 2016;
Heitz et al. 2019; Heitz and Belcour 2019] on blue noise error distribu-
tion for path tracing, can be seen as special cases in our framework.
This allows for a novel analysis and interpretation of the results in
the aforementioned works. We also state the necessary assumptions
and approximations necessary to get from our general formulation
to the algorithms presented in the papers.

Classification. The proposed techniques can be divided into a-
priori [Georgiev and Fajardo 2016; Heitz et al. 2019] and a-posteriori
[Heitz and Belcour 2019]. The main difference is that for a-priori
techniques broad assumptions are made on the integrand without
relying on information from renderings of the current scene. The
cited a-priori approaches describe ways for constructing offline
optimized point sets/sequences. We denote the method in [Georgiev
and Fajardo 2016] as BNDS (blue-noise dithered sampling), the
method in [Heitz et al. 2019] as HBS (Heitz-Belcour Sobol), and the
histogram and permutation method in [Heitz and Belcour 2019] as
HBH and HBP respectively (Heitz-Belcour histogram/permutation).

Energy. HBH/HBP both rely on a blue noise dither matrix op-
timized while using a Gaussian kernel (through void-and-cluster
[Ulichney 1993]). This kernel corresponds to the kernel in our frame-
work𝑔𝑔𝑔. The optimization of this dither matrix happens offline unlike
in our iterative energy minimization algorithms. This imposes mul-
tiple restrictions while allowing for a lower runtime. On the other
hand, the dither matrices in HBS and BNDS are optimized with
respect to empirically motivated energies that cannot be related
directly to what is used as energy in HBH and HBP. In the case of
BNDS the energy does not even introduce an implicit integrand,
and instead it is devised to represent a whole class of integrands.
We propose to substitute those empirically motivated energies with
a modified version of our energy. This allows an intuitive interpre-
tation and relating a-posteriori approaches to a-priori approaches.

Search space. Another notable difference constitute the search
spaces on which the different approaches operate. HBH selects
a subset from a set of precomputed samples in each pixel, HBP
permutes the assignment of sample sets to pixels, BNDS directly
modifies the set of samples in each pixel, and HBS considers a search
space made up of scrambling and ranking keys for a Sobol sequence.
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Working on the space of scrambling and ranking keys guarantees
the preservation of the desirable integration qualities of the Sobol
sequence used, and it should be clear that other methods can also
be restricted to such a space. Clearly, a search space restriction
diminishes the achievable blue noise quality. On the other hand, it
makes sequences more robust to integrands for which those were
not optimized.

5 A-POSTERIORI APPROACHES
In this section we analyze the permutation based approach (HBP)
and the histogram sampling approach (HBH) proposed in [Heitz and
Belcour 2019]. The two methods can be classified as dither matrix
halftoning methods in our framework, that operate on a horizontal
and vertical search space respectively. We make the approximations
and assumptions necessary to get from our general formulation to
HBP/HBH explicit.
We also note that a-posteriori methods lead to solutions that

adapt to the current render by exploiting known information (e.g.
previously rendered data, auxiliary buffers). They can generally
produce better results than a-priori methods.

Both HBP and HBH rely on a blue noise dither matrix 𝐵𝐵𝐵. Let 𝐵𝐵𝐵 be
the optimized blue noise dither matrix resulting from the minimiza-
tion of 𝐸(𝐵𝐵𝐵) = ∏︁𝑔𝑔𝑔 ∗𝐵𝐵𝐵∏︁22 over a suitable search space. The kernel 𝑔𝑔𝑔 is
the one used to generate the blue noise images for HBP/HBH. That
is, the Gaussian kernel in the void-and-cluster method [Ulichney
1993]. Our analysis does not rely on the kernel being a Gaussian,
or on the void-and-cluster optimization, this is simply the setting
of the HBP/HBH method. In the more general setting any kernel is
admissible.

5.1 Sorting step for the permutation approach
The permutation approach [Heitz and Belcour 2019] consists of
two main parts: sorting (optimization), and retargeting (correcting
for mispredictions). The sorting step in HBP can be interpreted as
minimizing the energy:

𝐸𝐻𝐵𝑃(𝜋) = ∏︁𝜋(𝑄𝑄𝑄)−𝑓2(𝐵𝐵𝐵)∏︁
2
2,∀𝑓2 ∶ 𝑎 < 𝑏 Ô⇒ 𝑓2(𝑎) < 𝑓2(𝑏). (51)

A global minimum of the above energy is achieved for a permutation
𝜋 that matches the order statistics of𝑄𝑄𝑄 and 𝐵𝐵𝐵. Thus our goal would
be to get from the minimization of:

𝐸(𝜋) = ∏︁𝑔𝑔𝑔 ∗ (𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) − 𝐼𝐼𝐼)∏︁22 = ∏︁𝑔𝑔𝑔 ∗ 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆))∏︁
2
2, (52)

to the minimization of Eq. (51) over a suitable search space (in
practice it is limited to permutations within tiles).
We successively bound the error, while introducing the assump-

tions implicit to the HBP method. The bounds are not tight, how-
ever, the different error terms that we consider illustrate the major
sources of error due to the approximation of the more general en-
ergy (Eq. (52)) with a simpler one (Eq. (51)). The substitution of the
kernel convolution 𝑔𝑔𝑔 ∗ ⋅ by a difference with a blue noise mask 𝐵𝐵𝐵
restricts the many possible blue noise error distributions towards
which 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) can go with a single one: 𝐵𝐵𝐵. A global minimizer of
the new simplified energy can thus be found by just sorting.

The closer the distributions of 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) and 𝛼𝐵𝐵𝐵, 𝛼 > 0 are locally,
the lower this restriction error can be made. Notably, for a close
to linear relationship between the samples and the integrand, and

sufficiently many pixels, 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) and 𝛼𝐵𝐵𝐵 can be matched closely
in practice. A different way to reduce the approximation error is
to introduce a sufficient amount of different blue noise images and
pick the one that minimizes the error. We start with the original
energy (Eq. (52)) and bound it through terms that capture the main
assumptions on which the model relies:

∏︁𝑔𝑔𝑔 ∗ 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆))∏︁2 =
min
𝑓2
∏︁𝑔𝑔𝑔 ∗ (𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) − 𝑓2(𝐵𝐵𝐵) + 𝑓2(𝐵𝐵𝐵))∏︁2 ≤

min
𝛼>0,𝑓2

∏︁𝑔𝑔𝑔∏︁1∏︁𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) − 𝑓2(𝐵𝐵𝐵)∏︁2

+∏︁𝑔𝑔𝑔 ∗ (𝑓2(𝐵𝐵𝐵) − 𝛼𝐵𝐵𝐵 + 𝛼𝐵𝐵𝐵)∏︁2 ≤
min
𝛼>0,𝑓2

∏︁𝑔𝑔𝑔∏︁1∏︁𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) − 𝑓2(𝐵𝐵𝐵)∏︁2

+∏︁𝑔𝑔𝑔∏︁1∏︁(𝑓2(𝐵𝐵𝐵) − 𝛼𝐵𝐵𝐵)∏︁2 + 𝛼∏︁𝑔𝑔𝑔 ∗𝐵𝐵𝐵∏︁2 .

(53)

In the above, 𝑓2 is taken over the space of all strictly monotonically
increasing functions, and 𝛼 > 0 is a real value used to provide an
amplitude matching between 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) and 𝐵𝐵𝐵 (this allows for the
second term to go to zero as the pointwise error goes to zero).

5.1.1 Third error term. We note that 𝐵𝐵𝐵 is precomputed offline in
order to approximately minimize 𝐸(𝐵𝐵𝐵) = ∏︁𝑔𝑔𝑔 ∗𝐵𝐵𝐵∏︁2. Thus, the third
term reflects the quality of the blue noise achieved with respect to
𝑔𝑔𝑔 in the offline minimization. This error can be made small without
a performance penalty since the optimization is performed offline.
We factor out a multiplicative scaling factor 𝛼 > 0 in the blue noise
quality term, to allow for the second term to go to zero. With this
change, we can consider 𝐵𝐵𝐵 to be normalized in the range (︀−1, 1⌋︀ and
we can encode the scaling in 𝛼 .

5.1.2 Second error term. The second term reflects the error intro-
duced by substituting a large search space (many local minima) with
a small search space. It introduces the first implicit assumption of
HBP by relating the first and third error terms (by using 𝑓2 and 𝛼
respectively) through the second error term. The assumption is that
there exists a permutation for which 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) can be made close to
𝛼𝐵𝐵𝐵, which would make the second term small. This holds in practice
if the pixel-wise error is zero on average (unbiased estimator within
each pixel), and we have a sufficiently large resolution/tiles: which
results in a higher probability that pixels from 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) can match
𝐵𝐵𝐵 well. Then the term ∏︁𝑔𝑔𝑔∏︁1∏︁𝑓2(𝐵𝐵𝐵) − 𝛼𝐵𝐵𝐵∏︁2 can be made small. We
note that this is a generalization of the third optimality condition in
[Heitz and Belcour 2019] (correlation-preserving integrand) since an
integrand linear in the samples can also better match 𝐵𝐵𝐵 provided
enough pixels. For a linear integrand the optimal 𝑓2 is also a linear
function (ideal correlation between samples and integrand). The
main difference between a linear integrand and a nonlinear/discon-
tinuous one, is the amount of sample sets/pixels necessary to match
𝑓2(𝐵𝐵𝐵) well, given an initial white noise samples’ distribution. So in
practice there are 4 factors directly affecting the magnitude of the
second term: the number of considered blue noise images, the size of
the tiles, the correlation between samples and integrand (accounted
for by 𝑓2), the bias/consistency of the estimators.
We note that the number of considered pixels depends on the

tile size in HBP, and the practical significance of this has been
demonstrated through a canonical experiment in the main paper.
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5.1.3 First error term. Before we proceed we need to further bound
the first error term by substituting 𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) by 𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)). As dis-
cussed in the main paper, this is achieved by introducing a difference
term ΔΔΔ(𝜋) = 𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) − 𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)), and then

⌋︂
𝐸𝐻𝐵𝑃 is recovered.

The error there can be made arbitrarily small through 𝑓2 (it is ac-
counted for in the second term). Thus we only need to study the
remaining error due to ΔΔΔ. In the case of HBP, ΔΔΔ is approximated by
non-overlapping characteristic functions in each tile (𝑑(𝑥,𝑦) =∞,
for 𝑥,𝑦 in different tiles). This means that the approximation error
is zero within each tile if the integrands are the same within the
tile and permutations act only within the tile, since ΔΔΔ(𝜋) = 000. On
the other hand, if this assumption is violated, mispredictions occur,
usually resulting in white noise.

5.1.4 ΔΔΔ term. HBP partitions screen space into a several tilesℛ1,
. . ., ℛ𝐾 , and permutations are only over the pixel values in a tile.
Having the partition induced by the tiling we can bound the first
term:

∏︁𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) − 𝑓2(𝐵𝐵𝐵)∏︁2 ≤
𝐾

∑
𝑘=1

∏︁𝜖𝜖𝜖𝑘(𝜋𝑘(𝑆𝑆𝑆𝑘)) − 𝑓2(𝐵𝐵𝐵)∏︁2 . (54)

Since additionally the permutations are optimized for the pixel val-
ues instead of the sample sets (which saves re-rendering operations),
then there is an assumption that within each tileℛ𝑘 the following
holds (we denote𝐴𝐴𝐴𝑘 =𝐴𝐴𝐴⋃︀ℛ𝑘

) ∶

𝑄𝑄𝑄𝑘(𝜋𝑘(𝑆𝑆𝑆𝑘)) = 𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)). (55)
Consequently it follows that 𝐼𝑖 = 𝐼 𝑗 ,∀𝑖, 𝑗 ∈ℛ𝑘 .
This assumption can be identified with the 4-th optimality con-

dition proposed in [Heitz and Belcour 2019]: screen-space coher-
ence. As discussed, the search space restriction to the tiles cor-
responds to an approximation of the ΔΔΔ term in our framework
by characteristic functions: 𝑑𝑘(𝑥,𝑦) = ∞, 𝑥 ∈ ℛ𝑘 ,𝑦 ⇑∈ ℛ𝑘 and
𝑑𝑘(𝑥,𝑦) = 0, 𝑥,𝑦 ∈ ℛ𝑘 . To account for the actual error when the
assumption is violated we introduce an additional error term per
tile: ΔΔΔ𝑘 =𝑄𝑄𝑄𝑘(𝜋𝑘(𝑆𝑆𝑆𝑘)) − 𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)), then we have the bound:

∏︁𝜖𝜖𝜖𝑘(𝜋𝑘(𝑆𝑆𝑆𝑘)) − 𝑓2(𝐵𝐵𝐵𝑘)∏︁2 =
∏︁𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)) − 𝐼𝐼𝐼𝑘 − 𝑓2(𝐵𝐵𝐵𝑘) +ΔΔΔ𝑘∏︁2 ≤
∏︁𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)) − 𝐼𝐼𝐼𝑘 − 𝑓2(𝐵𝐵𝐵𝑘)∏︁2 + ∏︁ΔΔΔ𝑘∏︁2 .

(56)

This means that even if all of the previous error terms are made
small, including ∏︁𝜋𝑘(𝜖𝜖𝜖𝑘(𝑆𝑆𝑆𝑘))− 𝑓2(𝐵𝐵𝐵𝑘)∏︁2, the error may still be large
due to ∏︁ΔΔΔ∏︁2. We refer to a large error due to the delta term asmispre-
diction - that is, a mismatch between the predicted error distribution
from the minimization of ∏︁𝜋𝑘(𝜖𝜖𝜖𝑘(𝑆𝑆𝑆𝑘)) − 𝑓2(𝐵𝐵𝐵𝑘)∏︁2 and the actual
error distribution resulting from the above permutation applied to
𝜖𝜖𝜖𝑘(𝜋𝑘(𝑆𝑆𝑆𝑘)). The best way to identify mispredictions is to compare
the predicted image 𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)) and the image rendered with the
same permutation for the sample sets𝑄𝑄𝑄𝑘(𝜋𝑘(𝑆𝑆𝑆𝑘)). A misprediction
occurring means that the assumption made to approximate ΔΔΔ was
incorrect ( ΔΔΔ𝑘 ≠ 000 for some tile ℛ𝑘 ), equivalently the optimality
condition of screen-space coherence is not satisfied.

Avoiding mispredictions. In practice mispredictions often occur
for larger tile sizes, since it is hard to guarantee that the integrand
remains similar over each tile. On the other hand, larger tiles allow
for a better blue noise as long as ΔΔΔ𝑘 = 0 in each tile, thus larger tiles
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Fig. 2. Here we showcase the effect of tile size on the quality of blue noise.
We also demonstrate the effect of a larger search neighborhood 𝑅 in our
optimization Alg. 2. For our case, we consider disk neighborhoods so that
they are contained within Heitz and Belcour’s tiles in terms of size, but
they can also overlap due to our formulation. From left-to-right, the input
white noise texture is optimized using our relocation algorithm. The last two
columns are from Heitz and Belcour’s [2019] method. The corresponding
power spectra of these optimized images (128 × 128) are also shown.

are desirable. The method fails even more often near edges, since
even for small tile sizes it allows swapping pixels over an edge. A
straightforward improvement involves partitioning the domain by
respecting edges. More involved methods may take into account
normals, depth, textures, etc.

5.1.5 𝐸𝐻𝐵𝑃 error term. The final step involves the minimization
of the energy in Eq. (56). Since different tiles do not affect each
other the minimization can be performed per tile (we adopt the
assumption from HBP ΔΔΔ𝑘 = 000):

𝜋
∗
𝑘 ∈ argmin

𝜋𝑘
∏︁𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)) − 𝐼𝐼𝐼𝑘 − 𝑓2(𝐵𝐵𝐵𝑘)∏︁2 =

argmin
𝜋𝑘

∏︁𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)) − 𝑓2(𝐵𝐵𝐵𝑘)∏︁
2
2 .

(57)

We have dropped the term 𝐼𝐼𝐼𝑘 since it does not affect the set of mini-
mizers (𝐼𝐼𝐼𝑘 is assumed constant in each tile). As discussed in Eq. (51),
a global minimum is given by matching the order statistics of𝑄𝑄𝑄𝑘
to the order statistics of 𝑓2(𝐵𝐵𝐵)) (we note that the order statistics
of 𝐵𝐵𝐵𝑘 do not change from the application of 𝑓2 since it is a strictly
increasing function). This is equivalent to performing the sorting
pass described in [Heitz and Belcour 2019]. A minor optimization
would be to pre-sort 𝐵𝐵𝐵 and instead store the sorted indices.

Tiling effect. In Fig. 2 we compare the effect of the tile size. In our
approach, the “tiles” can be defined per pixel, can have arbitrary
shapes, and are overlapping, the last being crucial for achieving a
good blue noise distribution. We consider white-noise with mean
0.5 (which is an ideal scenario for Heitz and Belcour’s method) and
compare various tile sizes. For a fair comparison, our tile radius 𝑟
corresponds similar tile-size in the permutation [2019] approach.
The power-spectrum profiles confirm the better performance of
our method. Retargeting [2019] cannot improve the quality of the
permutation approach either, since no misprediction can occur (ΔΔΔ =
0). The adverse effect of tiling is exacerbated in practice since, for
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images which are not smooth enough in screen space, tiles of smaller
sizes need to be considered.

Custom surrogate. The 𝐼𝐼𝐼𝑘 term does not need to be assumed con-
stant in fact. If it is assumed constant, that is equivalent to picking
a tile-constant surrogate, however, a custom surrogate may be pro-
vided instead. Then one would simply minimize the energy:

∏︁𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)) − (𝐵𝐵𝐵𝑘 + 𝐼𝐼𝐼𝑘)∏︁
2
2 . (58)

The energy has a different minimizer than the original HBP en-
ergy, but the global minimum can be found efficiently through
sorting once again.

5.2 HBP retargeting
The retargeting pass in HBP achieves two things. It introduces new
possible target solutions through new blue noise images, and it
corrects for mispredictions. The first is not so much a result of the
retargeting, as it is of varying the blue noise image every frame.
Ideally several blue noise images would be considered in a single
frame, and the best image would be chosen per tile (in that case one
must make sure that there are no discontinuities between the blue
noise images’ tiles) in order to minimize the second term in Eq. (53).
Instead, in HBP this is amortized over several frames.

The more important effect of retargeting is correcting for mispre-
dictions, by transferring the recomputed correspondence between
sample set and pixel value (achieved through rerendering) to the
next frame. This allows reducing the error due to the approximation
of ΔΔΔ (when the piecewise-tile constancy assumption on the inte-
grand is violated). Note however, that this is inappropriate if there
is a large temporal discontinuity between the two frames.

Implementation details. Retargeting requires a permutation that
transforms the blue noise image in the current frame into the blue
noise image of the next frame [Heitz and Belcour 2019]. This per-
mutation is applied on the optimized seeds to transfer the learned
correspondence between sample sets and pixel values to the next
frame. Implicitly, this transforming permutation also relies on a
screen space integrand similarity assumption, since there is no
guarantee that the corresponding values from the swap will match,
possibly incurring a misprediction once again (it can be modeled
by an additional ΔΔΔ term). In HBP [Heitz and Belcour 2019] the max-
imum radius of travel of each pixel in the permutation is set to 6
pixels. This has a direct effect on the approximation of ΔΔΔ, as the
travel distance of a pixel is allowed to extend beyond the original
tile bounds. In the worst case scenario a pixel may allowed to travel
a distance of

⌉︂
𝑡2𝑥 + 𝑡2𝑦 + 6 pixels, where 𝑡𝑥 , 𝑡𝑦 are the dimensions

of the tiles. An additional error is introduced since the retargeting
pass does not produce the exact blue noise image used in the next
frame, but some image that is close to it [Heitz and Belcour 2019].
This seems to be done purely from memory considerations since it
allows one blue noise image to be reused by translating it toroidally
each frame to produce the blue noise image for the next frame.

Relationship to our horizontal approach. Our horizontal approach
does not require a retargeting pass. It can directly continue with
the optimized sample sets and pixel values from last frame. There

is also no additional travel distance for a matching permutation as
in retargeting, which further minimizes the probability of mispre-
diction. Thus, it inherently and automatically produces all of the
advantages of retargeting while retaining none of its disadvantages.

5.3 Histogram sampling approach
The histogram sampling approach from Heitz and Belcour can be
interpreted as both a dithering and a sampling method. We study
the dithering aspect to better understand the quality of blue noise
achievable by the method.

Algorithm analysis. The sampling of an estimate in each pixel by
using the corresponding mask value to the pixel can be interpreted
as performing a mapping of the mask’s range and then quantizing to
the closest estimate. In HBH each estimate is equally likely to be sam-
pled (if a random mask is used), which implies a transformation that
maps equal parts of the range to each estimate. Let𝑄𝑘,1, . . .,𝑄𝑘,𝑁 be
the greyscale estimates in pixel 𝑘 sorted in ascending order. Let the
range of the blue noise mask be in [0,1]. Then the range is split into
𝑁 equal subintervals: (︀0, 1

𝑁
), . . . , (︀𝑁−1

𝑁
, 1⌋︀ which respectively map

to (︀𝑄1,
𝑄1+𝑄2

2 ), . . . , (︀𝑄𝑖−1+𝑄𝑖

2 ,
𝑄𝑖+𝑄𝑖+1

2 ), . . . , (︀𝑄𝑁−1+𝑄𝑁

2 ,𝑄𝑁 ⌋︀. If the
quantization rounds to the closest estimate, then the above mapping
guarantees the desired behavior. We note that since the estimates in
each pixel can have different values, the mapping for each pixel may
be different. We will denote the above mapping through 𝑓𝑓𝑓 . Then the
mapping plus quantization problem in a pixel 𝑘 may be formulated
as:

min
𝑖∈{1,...,𝑁}

⋃︀𝑄𝑘,𝑖 − 𝑓𝑘(𝐵𝑘)⋃︀. (59)

Note that the minimization in each pixel is independent, and
it aims to minimize the distance between the estimates and the
remapped value from the blue noise mask. If the set of estimates are
assumed to be the same across pixels, and are also assumed to be
spaced regularly, then 𝑓 is only a linear remapping, which effectively
transfers the spectral properties of 𝐵𝐵𝐵 onto the optimized image. No-
tably, the former is the screen-space coherence assumption from HBP,
while the latter is the correlation-preserving integrand assumption.
Thus we have seen that for optimal results the HBH method relies
on exactly the same assumption as the HBP method (while our
vertical iterative minimization approach lifts both assumptions).

Disadvantages. One of the key points is that the error distribution
and not the signal itself ought to ideally be shaped as 𝐵𝐵𝐵. This is
actually the case even in the above energy. From the way 𝑓𝑓𝑓 was
chosen it follows that the surrogate is equivalent to 𝑓𝑓𝑓 (0.5)which can
be identified as the image made of the median of the sorted estimates
within each pixel. This is the case since if the target surrogate of 𝐵𝐵𝐵
(during the offline optimization) was assumed to be 0.5, then after
the mapping it is 𝑓𝑓𝑓 (0.5). Generally, this is a very bad surrogate
in the context of rendering, and it generally increases the error
compared to the averaged image, making the method impractical.

Another notable disadvantage is that all estimates are considered
with an equal weight. This means that outliers are as likely to be
picked as estimates closer to the surrogate. This results in fireflies
appearing evenwhen those were not present in the averaged imaged.
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Compared to classical halftoning, where only the closest lower and
upper quantization levels are considered, HBH does not minimize
the magnitude of the error to the surrogate.
Finally, the two assumptions of: screen-space coherence and cor-

relation-preserving integrand, generally do not hold in practice. Es-
timates cannot be assumed to match between pixels (especially if
samples are taken at random), and they cannot be assumed to be
uniformly distributed, which implies that 𝑓𝑓𝑓 is not linear. This greatly
impacts the quality of the result, especially if it is compared to adap-
tive approaches such as our vertical error diffusion approach and
our iterative minimization techniques (see the experiments in the
main paper).

Generalization. The method can be generalized to take a custom
surrogate instead of the one constructed by the median of the esti-
mates within each pixel. This is achieved by splitting the per pixel
set of estimates into two parts: (greyscale) estimates greater than the
value of the (greyscale) surrogate in the current pixel, and estimates
lower than it. Then the mapping 𝑓𝑘 for the current pixel 𝑘 maps
values in (︀0, 0.5) to the lower set, and values in (︀0.5, 1⌋︀ to the higher
set, such that 𝑓𝑘(0.5) = 𝐼𝑘 . The original method is recovered if the
surrogate is chosen to be the implicit one for the original histogram
sampling method and if the appropriate corresponding mapping 𝑓𝑓𝑓

is kept.
The approach can be extended further by setting different proba-

bilities for the different estimates. The original histogram sampling
method correspond to setting the same probability for sampling
every estimate, equivalently: equal sized sub-intervals from (︀0, 1⌋︀
map to each estimate. Classical dither matrix halftoning can be
interpreted as setting an equal probability for the closest to the sur-
rogate upper and lower estimates, while every other estimate gets a
zero probability. Equivalently: equal sub-intervals from (︀0, 1⌋︀ map
to the two aforementioned estimates while no part of the interval
maps to the remaining estimates. Generally a custom probability
can be assigned to each estimate: 𝑝1, ..., 𝑝𝑁 , by having the intervals
(︀0, 𝑝1), ..., (︀∑𝑁−1𝑘=1 𝑝𝑘 , 1⌋︀ map to 𝑄1, ...,𝑄𝑁 (after quantization). We
note that an unbiased image can be recovered only if there is a map
to every estimate.

6 A-PRIORI APPROACHES
We discuss current state of the art a-priori approaches [Georgiev and
Fajardo 2016; Heitz et al. 2019] and their relation to our framework,
as well as insights regarding those.

6.1 HBS
In Heitz et al.’s work, a scrambling energy and a ranking energy
have been proposed (note that those energies are maximized and
not minimized):

𝐸𝑠 =∑
𝑖, 𝑗

exp(−∏︁𝑖 − 𝑗∏︁22
2𝜎2

)∏︁𝐸𝑖 − 𝐸 𝑗∏︁22 (60)

𝐸𝑟 =∑
𝑖, 𝑗

exp(−∏︁𝑖 − 𝑗∏︁22
2𝜎2

)(∏︁𝐸1𝑖 − 𝐸
1
𝑗 ∏︁

2
2 + ∏︁𝐸

2
𝑖 − 𝐸

2
𝑗 ∏︁

2
2) (61)

𝐸𝑖 = (𝑒1,𝑖 , . . . , 𝑒𝑇,𝑖) (62)

𝑒𝑡,𝑖(𝑆𝑖) =
1
⋃︀𝑆𝑖 ⋃︀

⋃︀𝑆𝑖 ⋃︀
∑
𝑘=1

𝑓𝑡 (𝑝𝑖,𝑘) − ∫(︀0,1⌋︀𝐷
𝑓𝑡 (𝑥)𝑑𝑥 (63)

𝑆𝑖 = {𝑝𝑖,1, . . . , 𝑝𝑖,𝑀𝑖
}. (64)

The upper indices in 𝐸
1
𝑖 , 𝐸

2
𝑖 indicate that the two energies are

evaluated with different subsets of the sample set 𝑆𝑖 in the pixel
𝑖 . The 𝑓𝑡 are taken from an arbitrary set of functions (in the orig-
inal paper those are random Heaviside functions). The described
form of the energies has been partially motivated by the energy in
[Georgiev and Fajardo 2016]. This does not allow for a straightfor-
ward interpretation or a direct relation to the (implicit) energy used
for a-posteriori approaches in [Heitz and Belcour 2019].

Scrambling energy. Wemodify 𝐸𝑠 in order to relate it to the energy
in our framework and to provide a meaningful interpretation:

𝐸
′
𝑠 =

𝑇

∑
𝑡=1

𝑤𝑡 ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄𝑡 (𝑆𝑆𝑆) − 𝐼𝐼𝐼𝑡 ∏︁22, (65)

𝑄𝑡,𝑖(𝑆𝑆𝑆) =
1
⋃︀𝑆𝑖 ⋃︀

⋃︀𝑆𝑖 ⋃︀
∑
𝑘=1

𝑓𝑡 (𝑝𝑖,𝑘), 𝐼𝑡,𝑖 = ∫(︀0,1⌋︀𝐷
𝑓𝑡 (𝑥)𝑑𝑥. (66)

We have relaxed the Gaussian kernel to an arbitrary kernel𝑔𝑔𝑔 and
absorbed it into the norm. More importantly we have removed the
heuristic dependence of error terms on their neighbors, and instead
the coupling happens through the kernel itself. Finally, we have
introduced weights𝑤1, . . . ,𝑤𝑇 that allow assigning different impor-
tance to different integrands. Thus, this is a weighted average of our
original energy applied to several different integrands, matching
our a-priori approach (Eq. (1)). Through this formulation a direct
relationship to the a-posteriori methods can be established, and it
can be motivated in the context of both the human visual system
and denoising. Particularly, the scrambling energy 𝐸

′
𝑠 is over the

space of scrambling keys, which allow permuting the assignment
of sample sets. This is in fact the horizontal setting from our for-
mulation in the main paper. The space can be extended further if
the scrambling keys in each dimension are different (as in HBS).
The same can be done in a-posteriori methods, if the optimization is
performed in each dimension as discussed in Section 2.

Ranking energy. The ranking keys in HBS describe the order in
which samples are consumed. This is useful for constructing pro-
gressive a-priori methods. Notably, the order in which samples will
be introduced can be optimized. Having a sequence of sample sets in
each pixel: 𝑆𝑖,1 ⊂ . . . ⊂ 𝑆𝑖,𝑀 ≡ 𝑆𝑖 and respectively the images formed
by those: 𝑆𝑆𝑆1, . . . ,𝑆𝑆𝑆𝑀 , the progressive energy may be constructed as:
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𝐸
′
𝑟 =

𝑀

∑
𝑘=1

𝑤𝑘∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄(𝑆𝑆𝑆𝑘) − 𝐼𝐼𝐼∏︁
2
2 . (67)

The quality at a specific sample count corresponding to 𝑆𝑆𝑆𝑘 is
controlled through the weight 𝑤𝑘 . The original energy maximiz-
ing the quality of the full set is retrieved for (𝑤1, . . . ,𝑤𝑀−1,𝑤𝑀) =
(0, . . . , 0, 1). Since the sample sets 𝑆𝑖 , . . . , 𝑆𝑖,𝑀 are optimized by choos-
ing samples from 𝑆𝑖 this can be seen as a vertical method. Finally,
the ranking keys can also be defined per dimension, which can be
related to a-posteriori methods through the suggested dimensional
decomposition in Section 2.

6.2 Blue-noise dithered sampling energy
In Georgiev and Fajardo’s work, in order to get an optimized (multi-
channel) blue noise mask, the following energy has been proposed:

𝐸(𝑝1, . . . , 𝑝𝑁 ) =∑
𝑖≠𝑗

exp(−∏︁𝑖 − 𝑗∏︁2

𝜎2
) exp

⎛
⎝
−
∏︁𝑝𝑖 − 𝑝 𝑗∏︁𝑑⇑2

𝜎2𝑠

⎞
⎠
, (68)

which bears some similarity to the weights of a bilateral filter.
In the above 𝑖, 𝑗 are pixel coordinates, and 𝑝𝑖 , 𝑝 𝑗 are 𝑑-dimensional
vectors associated with 𝑖, 𝑗 . Let the image formed by those vectors
be 𝑆𝑆𝑆 . The energy aims to make samples 𝑝𝑖 , 𝑝 𝑗 distant (∏︁𝑝𝑖 −𝑝 𝑗∏︁must
be large) if they are associated with pixels which are close (∏︁𝑖 − 𝑗∏︁
is small).

Relation to our framework. Even though the energy is heuristically
motivated, we can very roughly relate it to our framework. The
above energy implicitly assumes classes of integrands𝑄𝑄𝑄1, ...,𝑄𝑄𝑄𝑇 ,
such that close samples 𝑝𝑖 , 𝑝 𝑗 are mapped to close values 𝑄𝑖,𝑡 (𝑝𝑖),
𝑄 𝑗,𝑡 (𝑝 𝑗), and distant samples are mapped to distant values. Notably,
the form of the energy does not change over screen-space, so the
same can be implied about the integrands. One such class is the
class of bi-Lipschitz functions. The bound can be used to relate a
modified version of the original energy, to an energy of the form:

𝐸𝑄𝑄𝑄𝑡
=∑
𝑖≠𝑗

exp(−∏︁𝑖 − 𝑗∏︁2

𝜎2
) exp

⎛
⎝
−
𝐶∏︁𝑄𝑖,𝑡 (𝑝𝑖) −𝑄 𝑗,𝑡 (𝑝 𝑗)∏︁𝑑⇑2

𝜎2𝑠

⎞
⎠
.

(69)
Thus, the original energy can indeed be interpreted as reasonable
for a whole class of sufficiently smooth integrands, instead of an
energy that works very well with one specific integrand.

A similar thing can be achieved in our framework, if the weighted
energy is considered:

𝐸
′(𝑆𝑆𝑆) =

𝑇

∑
𝑡=1

𝑤𝑡 ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄𝑡 (𝑆𝑆𝑆) − 𝐼𝐼𝐼𝑡 ∏︁2 . (70)

The kernel 𝑔𝑔𝑔 can be a Gaussian with standard deviation 𝜎 , as in the
original energy, or it can be relaxed to an arbitrary desired kernel.
𝑄𝑄𝑄1, . . . ,𝑄𝑄𝑄𝑇 are representative integrands that satisfy the discussed
smoothness requirements, and𝑤𝑡 are associated weights assigning
different importance to the integrands. Finally, the reference images
are given by the integrals 𝐼𝐼𝐼𝑡 = ∫(︀0,1⌋︀𝑑 𝑄𝑄𝑄𝑡 (𝑥)𝑑𝑥 .

It should be clear that this is a weighted average constructed from
the standard energy in our framework applied to a set of integrands.

There are a number of benefits of such an explicit formulation. Most
importantly, it allows for a-priori methods to be studied in the same
framework as a-posteriori approaches. Additionally, explicit control
is provided over the set of integrands and the kernel in a manner
that allows for a straightforward interpretation.

Perceptual quality trade-off. While the energy of Georgiev and
Fajardo is able to account for many different integrands, this is
achieved at the cost of the perceptual quality of the produced pat-
terns. We illustrate this in Fig. 4 by considering a constraint where
25% of all pixels have an error of +1 and 25% of all pixels have an
error of -1.

For the experiment an initial white noise image is permuted using
a brute force optimization with our energy from the main paper and
the energy of Georgiev and Fajardo. One can see that the pattern
resulting from our energy always decays faster under convolution.
This can be explained by the fact that the bilateral filter-like energy
forces nearby pixels to be as different as possible. This doesn’t
necessarily lead to the best results under convolution illustrated
by Figure 5, but it is necessary in the setting of a-priori methods
since not much information is assumed regarding the integrand.

We consider a more realistic example in Fig. 6 where the underly-
ing signal is a sine function with vertically increasing frequency. We
first degrade the signal with uniform white noise. To optimize the
error distribution, we use our Kronecker kernel energy extension
(eq. 11 from the main paper where ℎ = 𝛿) that is given by:

𝐸(𝑄𝑄𝑄) = ∏︁𝑔𝑔𝑔 ∗ 𝒯 (𝑄𝑄𝑄) − 𝒯 (𝐼𝐼𝐼)∏︁22, (71)

where 𝒯 simply clamps values to (︀0, 1⌋︀. The result with our energy
function matches better the original signal. This is perfectly in line
with all of our results on realistic scenes presented in the main paper
and the supplemental HTML.

6.3 Blue-noise dithered sampling algorithm
The second contribution of Georgiev and Fajardo’s work is a sam-
pler which relies on an image optimized with Eq. (68) and uses
it to achieve a blue noise distribution of the rendering error. We
summarize the algorithm and discuss some details related to it.

Algorithm. Let𝐵𝐵𝐵 be an image (with𝑑-channels) optimized by min-
imizing Eq. (68) over a suitable search space. Let 𝒫 = {𝑝1, . . . , 𝑝𝑁 }
be a sequence of 𝑑-dimensional points. Within each pixel 𝑖 the sam-
ple set 𝑆𝑖 is constructed, such that

𝑝 𝑗 ∈ 𝒫 Ô⇒ 𝑝𝑖, 𝑗 ∈ 𝑆𝑖 ∶ 𝑝𝑖, 𝑗 = (𝑝 𝑗 + 𝐵𝑖) mod 1. (72)

The sequence 𝒫 can be constructed by using various samplers (e.g.,
random, low-discrepancy, blue-noise, etc.). The construction of the
new points for pixel 𝑖 can be interpreted either as toroidally shifting
the sequence 𝒫 by 𝐵𝑖 or equivalently as toroidally shifting the
sequence {𝐵𝑖 , . . . , 𝐵𝑖} by 𝒫 .

The sequences constructed within each pixel are used to estimate
the integral in the usual manner. Since a finite number of dimen-
sions 𝑑 are optimized the suggestion is to distribute the constructed
sequences over smoother dimensions, while other dimensions may
use a standard sampler.
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Random Georgiev and Fajardo [2016] Heitz et al. [2019] Ours Sobol
MSE: 0.118636 0.0921076 0.0787028 0.117336 0.178861
pMSE: 0.0170958 0.011277 0.00869183 0.0119757 0.0126065

Fig. 3. A comparison illustrating that even a sampling sequence formed by a stack of blue noise images (Ours) yields a good distribution (note the tiled error
spectra). The integration error is higher however, degrading the quality. This is the case because the assumed integrand is far from linear in each dimension
(see Extension in Section 6.3). The images use 4 samples per pixel, and the degradation of the spectral properties with the number of samples is clear for
[Georgiev and Fajardo 2016] and even [Heitz et al. 2019], while it is not so much the case for Ours. This demonstrates that different methods offer a different
trade-off between integration error and distribution for arbitrary integrands. Constraining the search space to using toroidal shifts or scrambling and ranking
keys restricts the achievable blue noise distribution.
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Fig. 4. We show an example demonstrating how our energy (top row) forms
clusters where required so that the convolved error (second column) pro-
duces the best cancellation effect. The first column shows error images.
Ours would converge to a grey (reference) image faster compared to the one
using the energy in Eq. (68). The convolved images in the second column
show the same behavior. The third column shows the absolute difference
between the convolved error and the reference grey image (darker is better).
The fourth column shows the error power spectra, with ours showing much
better blue-noise characteristics than others.

Effect of the toroidal shift. Let us consider a linear one-dimensional
integrand 𝑓 (𝑞) = 𝛼𝑞 + 𝛽 that does not vary in screen space, and a
sequence 𝒫 with a single point 𝑝 . Furthermore, if we assume 𝑝 = 0,
then the error is given by:

𝑄𝑄𝑄(𝐵𝐵𝐵) − 𝐼𝐼𝐼 = 𝛼𝐵𝐵𝐵 + 𝛽𝛽𝛽 − 𝐼𝐼𝐼 . (73)

Since𝑄𝑄𝑄 does not vary in screen space, then 𝐼𝐼𝐼 also does not. Then
the power spectrum of the error (excluding the DC) matches the
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Fig. 5. We consider an example with 2 error pixels (+1 and -1). The first
column shows the error images, the second column shows this error con-
volved with a gaussian kernel, and the third column shows the difference
between the convolved error and the reference (constant) greyscale image.
In the top row, our energy clusters these pixels such that they can cancel out
each other’s contribution under convolution. Georgiev and Fajardo’s energy
in the bottom row pushes these pixels farther away. The corresponding
absolute difference (convolved error − constant grey image) images in the
third column demonstrate that our energy makes the error converge faster
to the constant greyscale image (darker is better).

power spectrum of 𝐵𝐵𝐵 up to the multiplicative factor 𝛼2. Then, under
the assumption that the integrand is linear, does not vary in screen
space, and there is no toroidal shift, the power spectral properties
of 𝐵𝐵𝐵 are transferred ideally to the error.

On the other hand, if 𝑝 is chosen to be non-zero, then the spectral
characteristics of the image ((𝐵𝐵𝐵 + 𝑝) mod 1) will be transferred
instead. We have empirically verified that even with a very good
quality blue noise image 𝐵𝐵𝐵 the toroidal shift degrades its quality
due to the introduced discontinuities. Thus, even in the ideal case
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Initial Georgiev [2016] Ours Reference

Fig. 6. A more realistic test with kernel 𝑔𝑔𝑔 using 𝜎 = 1⇑⌋︂2. The signal is
a sine function that increases in frequency along the vertical axis. Our
method handles tone mapping and preserves well both the lower and higher
frequencies present in the signal.

of a constant in screen space linear 1-D integrand, toroidal shifts
degrade the quality.

Effect of using multiple samples. Let us consider the same inte-
grand 𝑓 (𝑞) = 𝛼𝑞 + 𝛽 , which we have identified as being ideal for
transferring the spectral characteristics of 𝐵𝐵𝐵 to the error. And let
us assume that we are given several samples: 𝒫 = {𝑝1, ..., 𝑝𝑁 }, and
we have constructed the sample set image 𝑆𝑆𝑆 through toroidal shifts
with 𝐵𝐵𝐵. Then the error is:

𝑄𝑖(𝑆𝑖) − 𝐼𝑖 =
𝛼

𝑁

𝑁

∑
𝑘=1

𝑝𝑘,𝑖 + 𝛽 − 𝐼𝑖 . (74)

The power spectrum of the error thus matches the power spectrum
of the image 𝐴𝑖 = ∑𝑁𝑘=1 𝑝𝑘,𝑖 (excluding the DC) up to a multiplica-
tive factor. For a random point sequence 𝒫 the more points are
considered, the closer to white noise𝐴𝐴𝐴 becomes. This is further ex-
acerbated by the discussed discontinuities introduced by the toroidal
shifts.

Extension. Wehave argued that both toroidal shifts and increasing
the number of samples has a negative effect on transferring the
spectral properties of 𝐵𝐵𝐵 even in an ideal scenario. Naturally the
question arises whether this can be improved. Our proposal is the
direct optimization of point sets without the application of a toroidal
shift.

For the discussed example this entails constructing a sequence of
𝑁 images 𝐵𝐵𝐵1, . . . ,𝐵𝐵𝐵𝑁 such that𝐴𝐴𝐴𝑘 = ∑𝑘𝑗=1𝐵𝐵𝐵 𝑗 is a blue noise image.
Then the error has the (blue noise) spectral characteristics of𝐴𝐴𝐴𝑘 at
each sample count (Fig. 3):

𝑄𝑖(𝐵1,𝑖 , . . . , 𝐵𝑘,𝑖) − 𝐼𝑖 =
𝛼

𝑘

𝑘

∑
𝑗=1

𝐵 𝑗,𝑖 + 𝛽 − 𝐼𝑖 . (75)

7 ADDITIONAL RESULTS
In Fig. 8 we showcase tiled error spectra and SCIELAB images for
several methods for the Wooden Staircase scene. SCIELAB acts
very similarly to the pointwise squared error, as confirmed by its
preference for methods that minimize the pointwise error. Thus it
does not make for a very good metric for quantifying the quality of
the distribution of the noise unlike VDP or the tiled error spectra.
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Original Tiled error power spectrum Ours Tiled error power spectrum Heitz and Belcour Tiled error power spectrum
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Fig. 7. The textured Cornell box scene is compared over different samples per pixel using our texture handling approach in Section 2. The improvements are
visible for all spp over Heitz and Belcour’s permutation approach using demodulation. This is especially apparent when comparing the tiled error spectra.
Note that the spectra are not normalized to 1.
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(a) Random (1 spp) (b) Random (4-spp average) (c) Dithering (ours) (d) Error diffusion (ours) (e) Optimization (ours) (f) Histogram [2019]
MSE: 1.88 × 10−2 8.88 × 10−3 7.80 × 10−3 6.87 × 10−36.87 × 10−36.87 × 10−3 1.05 × 10−2 1.88 × 10−2
pMSE: 7.79 × 10−3 5.59 × 10−3 5.36 × 10−3 5.08 × 10−3 4.45 × 10−34.45 × 10−34.45 × 10−3 6.69 × 10−3

Fig. 8. In the main paper compare all vertical methods on the Wooden staircase scene. All of our methods achieve lower pMSE than the baseline (the averaged
image), while the permutation method increases the error both in terms of MSE and pMSE. The tiled error power spectra images confirm the pMSE ranking
and provide a visualization of the local pMSE distribution. We also show S-CIELAB error visualizations which suggest that pointwise error is heavily weighted
in S-CIELAB, which does not make it a very good predictor for the perceptual quality related to the noise distribution, unlike HDR-VDP-2.

ACM Trans. Graph., Vol. 41, No. 3, Article 26. Publication date: June 2022.


	Abstract
	1 A-priori optimization
	2 Texture demodulation for horizontal optimization
	3 Improving iterative-optimization performance
	3.1 Horizontal swaps
	3.2 Vertical swaps
	3.3 Multiple simultaneous updates
	3.4 Implementation details
	3.5 Spatially varying kernels

	4 Relationship to previous work
	5 A-posteriori approaches
	5.1 Sorting step for the permutation approach
	5.2 HBP retargeting
	5.3 Histogram sampling approach

	6 A-priori approaches
	6.1 HBS
	6.2 Blue-noise dithered sampling energy
	6.3 Blue-noise dithered sampling algorithm

	7 Additional results
	References

