


• In this work, we aim to render participating media in a manner that is robust 

to media properties and to lighting.  

• We want to handle optically dense or rare media with high or low scattering 

albedo.  

• We want to handle diffusive multiple scattering (as in subsurface scattering) 

or highly focused lighting (as in volumetric caustics). 

• The algorithm we’ve developed has all these features and it was actually 

used to render the image shown here. 
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• The most robust existing approaches for volumetric light transport can be 

divided into two categories.  

• First, we have Monte Carlo path integration, such as bidirectional path 

tracing.  

• And second, we have techniques derived from photon density estimation, 

such as volumetric photon mapping, the beam radiance estimate or photon 

beams. 

• While each of these techniques is great in certain types of media, it may fail 

for other types. 

• We address this problem in our work. 

 



• To further motivate our work, let’s look at the volumetric light transport in 

the previously shown scene as rendered by some of the existing 

algorithms. 

• This is bidirectional path tracing, and we can see that the image is pretty 

noisy even after an hour. 



• Volumetric photon mapping 



• Beam radiance estimate, much better but still not great. 



• Photon beams. 



• And finally, our algorithm is able to produce a much cleaner image in the 

same amount of time. 



• To achieve these results, we follow previous work that has shown that 

combining different estimators using Multiple Importance Sampling is an 

excellent way to achieve robustness. 

• Notably, the Vertex Connection and Merging and Unified Path Sampling 

frameworks have recently combined MC path integration with photon 

density estimation. 

• We apply the idea of combining estimators to volumetric light transport. 

• We call the resulting algorithm “unified points, beams and paths” to 

reflect the multitude of different estimators in the mixture. 
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• We have addressed some interesting open questions related to combining 

estimators in volumetric light transport. 

 

• First, there are more estimators in volumes than on surfaces. 

• Do they have some complementary advantages to justify their 

combination? 

• To answer this question, we derived their variance and found out that the 

variance behavior is indeed complementary, so the combination makes 

sense. 

• And as a bonus, we’ve shown that there is a very tight connection between 

what we in graphics call the photon points and beams and the so-called 

collision and track-length estimators used in neutron transport. 

 

• The second question is how exactly to combine the estimators. 

• To do this, we’ve developed a new generalization of Multiple Importance 

Sampling. 

 

• Third, we developed a practical combined rendering algorithm robust to 

different media properties. 

 



• Before giving details on these points.... 



… let me briefly review the different volumetric photon density estimators. 
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• Photon density estimation works in two passes.  

• In the first pass, we trace paths from light sources and store a 

representation of equilibrium radiance. 

• In media, we can represent the radiance either by particles or photon 

points, or by particle tracks, or photon beams. 

• In the second pass, we query this representation to render an image. 

• Here, we can use a radiance estimate at a certain query point, or along an 

entire ray, or query beam. 

• This gives us four basic types of estimators: Point-point, Beam-point, Point-

Beam, Beam-Beam. 
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• In addition, the photon beams may either be limited to the actual trajectory 

of the path that generated them, which we call “short” beams. 

• Or they may extend all the way to the next surface, which we call “long” 

beams. 

• This difference has a significant impact on the estimator variance. 

 

• We can apply the exact same thing also to the query beams, so we can 

have short and long query beams. 
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• The density estimation kernels may have various dimension, which 

increases the number of estimator even more. 

• In practice, we follow the previous work and choose the estimators with the 

lowest kernel dimension. 

• But note that all the theory derived in the paper applies to all the 

estimators. 
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• The bottom line is, there are many volumetric estimators. 

• Does it make sense to combine them? 
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• For example, intuitively, one could expect that because the beams fill up 

the space so much faster, they might be always better than points. 

• But we will see that while photon beams are great in some media, they may 

be outperformed by points in other media.  
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• To formally asses the performance of the different estimators, we derived 

their variance in a canonical configuration. 
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• The configuration that we consider consists of two fixed perpendicular rays 

in a homogeneous medium. 

• The green one is at the end of a light sub-path and the red one at the end 

of an eye sub-path. 

• We choose a constant cube kernel and assume that both rays pass 

through the kernel.  

 

• In rendering, this configuration is sampled randomly which incurs some 

extra variance.  

• But this variance is the same for all the estimators so we won’t need to 

worry about it here because our goal is to compare the variance of the 

different estimators. 
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• To simplify the diagram, I’ll draw it flat. 

 

• In this setup, the expected value of the estimators is the integral of 

transmittance over the kernel along the light ray … 

• … times the same thing for the eye ray. 

 

• And each of the estimators estimates this value in a different way with 

different variance for which we have derived analytical expressions. 

• And this variance depends in an interesting way on the size of the kernel 

compared to the mean free path of the medium. 
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• Let’s have a closer look at how the integral is estimated by the three 

estimator types along one of the two rays. 

 

• The long beam estimator shoots an infinite ray and simply always return 

the right answer calculated analytically, which is a zero-variance estimators 

of the integral. 

 

• The short beam estimator samples a finite ray with length proportional to 

transmittance and returns the length of the portion of the ray that lies inside 

the kernel. This could be zero if the ray does not reach the kernel. The 

variance in this case is non-zero and stems from two factors: whether or 

not the kernel is reached at all, and if it is, what portion of the ray actually 

lies inside the kernel. 

 

• The point estimator samples a finite ray as before, but it returns a constant 

number if the end point fall within the kernel and zero otherwise. So the 

variance is only due to the chance of ‘hitting’ the kernel. 

 

• Let’s now explain the variance behavior of the short beam and point 

estimators on an intuitive level: 

• If the kernel is really large, the point estimator will have low variance  
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because it often hits the kernel and there is not other source of variance. 

The short beam, on the other hand, will show high variance because of the 

varying length of the ray segment that overlaps the kernel. 

• If, on the other hand, the kernel is small, the point estimator will have a 

high variance because it will have hard times sampling a position in the 

kernel. The short beam variance will be low because the variability of the 

ray segment over the kernel will be small (simply because the kernel itself 

is small). 



• Let’s now plot the normalized standard deviation (NSD), which is a 

measure of relative variance, against the kernel width (expressed in the 

units of the mean free path length of the medium). 

• Equivalently, if we fix the kernel size, the horizontal axis tells us how dense 

or rare the medium is. 

• On the left there are rare media or small kernels, on the right, there are 

dense media or large kernels. 

 

• We plot the NSD for two selected estimators, short-beam – long-beam and 

point – long-beam. 

• The long beam contributes zero variance, so we’re really comparing short 

beams to points. 

• And we see that while the NSD happens to be constant for the short 

beams, it has an interesting behavior for the points. 

• As the kernel gets smaller, or equivalently, the medium gets thinner, the 

NSD of the point estimator diverges. 

• On the other hand, for large kernels or dense media, the NSD of points 

approaches zero. 

• There’s a cross point between the short beams and points at the kernel 

width of 1 mean free path. 
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• This behavior exactly corresponds to the intuition given on the previous 

slide. 



• The take-home message from this analysis is: beams are better in rare 

media, where the mean free path is much longer than the kernel size. 

• On the other hand, in dense media, when the mfp is shorter than the kernel 

size, points perform better. 

• We believe this is a really interesting results, and we consider the variance 

analysis one of the major contributions of the paper, because so far, the 

relative performance of point- and beam-based estimators has been 

unknown. 
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• The next question is, how to combine the estimators. 

• To do this, we’ve developed a new generalization, or extension of Multiple 

Importance Sampling. 



• Why did we need it, why not use the MIS as is? 

• The problem is that blurring by the density estimation kernel corresponds to 

extra integral dimensions over the usual path integral. 

• So we are actually combining estimators of integrals over spaces of 

different dimension and the original MIS just isn’t designed to do this. 
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• We extend the MIS to directly recognize that some of the estimators in the 

mixture may have some extra dimensions. 

• We’ve also developed the corresponding balance heuristic that allows us to 

calculate the combination weights. 

• The result is compatible with the VCM and UPS frameworks but our 

formulation is more general and possibly applicable beyond the problem of 

combining volumetric estimators. 

• And I’ll have to refer to the paper for more details. 
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• Now we have a lot of theory and we want to use it to implement a practical 

combined algorithm. Here’s what we did. 



• First, we need to choose the estimators to combine. 

• We use the point-point, point-beam, beam-beam estimators. 

• We do not use Beam-Point estimator because it has similar properties to 

the Point-Beam but its implementation is much less efficient. 
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• Second, it makes little sense to combine long and short beam version of 

the same estimator so we need to choose one. 

• In our test, the best performance was obtained with short photon beams 

but we use long query beams. 
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• It is important to stress that while the original estimators apply the 

point/beam queries just along the primary ray from the eye, we use the 

queries for all the segments along the eye paths, and we combine the 

results using our extended MIS. 

• So each of the estimators results in a full family of estimators. 
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• And we add the sampling techniques from bidirectional path tracing. 
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• Here’s how the algorithm works. 

• In each iteration we start by tracing a number of paths from the light 

sources. 

• We connect their vertices to the eye, which corresponds to light tracing. 

• We store the vertices as photon points, and the path segments as photon 

beams. 

• And we do this for multiple paths from the lights. 



• In the second phase of the iteration, we trace eye paths through each pixel. 

• For each segment of the path, we look up the photons and evaluate to the 

point-beam estimator. 

• We then look up the beams, which is the beam-beam estimator. 

 



• After that, we sample the scattering distance along the eye ray and connect 

to the light path vertices. This corresponds to bidirectional path tracing. 

 



• Then we query the photons around the scattering location and evaluate the 

point-point estimator. 



• And then we extend the eye path and repeat. 



• Let’s see what the algorithm does. 



• We have set up this test scene which is filled with rare, forward scattering 

fog.  

• There are two spheres filled with a dense back-scattering medium. 

• And the scene is illuminated almost entirely by caustic lighting. 



• For the algorithm comparison, we again consider only transport in media. 



• And here’s how the previous work does. 

• The point-point estimator, which is equivalent to volumetric photon mapping 

without ray marching, does a pretty good job at rendering the dense 

spheres but cannot handle the sparser fog. 

• The point-beam estimator, or the beam radiance estimate, does a much 

better job at rendering the fog, though it still fairly noisy as you can see in 

the inset. 

• The beam-beam estimator, or photon beams, provides excellent results for 

the fog, bug the spheres suffer from some nasty noisy artifacts. 

• Bidir handles the fog quite well, though not as well as the photon beams. It 

produces bad artifacts in the dense spheres because much of the 

illumination there is essentially a reflected caustic. 



• Our algorithm is able to take the best from the individual techniques to 

produce a much cleaner image. 



• If we compare our result to the BRE (at the top) and photon beams (at the 

bottom), we see that the fog is rendered much better than with the BRE but 

not as well as with the photon beams. 

• This is the price we have to pay for combining all the estimators: if one 

medium is best handled by just one estimators, running the other ones only 

incurs overhead. 



• Let’s go back to the results of the previous work and …. 



• … and let’s start replacing it by the weighted contribution of the individual 

estimators to our combined result. 

• PP, PB, BB, BPT. 

• We see that most of the image is made up from the contributions from the 

point-beam and beam-beam estimators, where the point-beam takes care 

of rendering the dense, back-scattering spheres, and the beam-beam 

estimator renders the rarer fog.  

• Bidirectional path tracing contributes mostly the surface-to-medium 

transport, which is visible as the blue tint of the right sphere.  



• The setup of this more realistic scene is fairly similar to the previous one 

and we have been able to confirm the observations even here. 



• Indeed, we see the same behavior as before: the BRE (top) handles the 

dense media much better than photon beams (bottom) and vice-versa for 

the sparser fog. 

• Our algorithm takes the best of both. 



• Similarly, when we look at the weighted contributions, dense media like the 

wash-basing are mostly covered by the BRE, thinner media like the fog by 

the photon beams.  

• The fact that BPT is in charge of the surface-to-media transport is quite 

apparent here: it provides the blue tint to the media due to reflections from 

the blue tiles on the walls. 



• I’ve already shown the results for this scene… 



• … but I want to use it to point out that in this case, even though none of the 

previous algorithm handles this scene well, the combination is almost clear. 

• This provides some evidence that our MIS-based combination is more 

robust than a heuristic combination that would be based on selecting a 

particular estimator for each medium. 



• Of course our work does not come without its limitations. 

• First, in all our results, we use a fixed kernel radius. To enable radius 

reduction and therefore consistent rendering, we would need an asymptotic 

variance and bias analysis which we haven’t done so far. 

• Furthermore, the estimator combination relies only on the variance 

considerations, but taking bias and efficiency into account could 

significantly improve the results. 

• Having a solid theory that would tell us how many samples to take from 

each estimator would be extremely useful, especially in the cases where 

some estimators could be completely disabled. 

• And last but not least, we need a better data structure for looking up the 

photon beams. 



• The take-home message from this talk could be: Beams are not always 

better than points. 

• Beams are great for rare media. 

• But dense media are better handled by points. 

• We have provided evidence for this through our theoretical variance 

analysis and the rendered images. 

• Furthermore, our extension of Multiple Importance Sampling  has potential 

application beyond just the combination of volumetric estimators. 

• Finally, we have shown a practical volumetric light transport simulation 

algorithm robust to a wide range of media properties. 

 



• The source code that was used to generate all our results is available, 

including scripts to reproduce all the results. 

• It’s called SmallUPBP for historical reasons – it’s built on SmallVCM, but it’s 

not really that small anymore. 



• This work has also received an extensive coverage on fxguide, so please 

make sure check it out! 



• Let me thanks the funding agencies, Chaos Group and Ondra Karlík for the 

scenes, and the SIGGRAPH reviewers for their helpful comments. 



• I want to thank you for your attention. 
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• The Point-Point 3D estimator is equivalent to volumetric photon mapping 

but without ray-marching. 

• So there’s a single point along the camera ray where we look-up the 

photons. 

• You can see that there’s quite some noise even after one hour of rendering. 



• Now we move to the Point-Beam 2D estimator, that is the beam radiance 

estimate. 

• The performance in terms of the number of iterations is lower but you can 

see that the image quality has much improved. 



• Now let us move to the beam-beam 1D estimator, or photon beams. 

• I have to point out that the number of stored beams is only 2% of the 

number of photon points. 

• This is because building the data structure and looking-up beams is much 

slower than for points. 

• So we’ve selected the number of beams that leads to roughly the same 

iteration time. 

• And we see that while the results in the soap block have improved, in other, 

dense media, the results are not great. 



• Next, bidirectional path tracing does not work very well here because much 

of the illumination is essentially due to reflected caustics. 

• But the bidir path tracer is really important for rendering surfaces and the 

surface-to-medium transport. 



• And finally our combined algorithm achieves the best result in spite of the 

fact that it only manages to run about 750 iteration in one hour. 


