# Unifying Points, Beams, and Paths in Volumetric Light Transport Simulation Supplemental Document 

Jaroslav Křivánek ${ }^{1} \quad$ Iliyan Georgiev ${ }^{2} \quad$ Toshiya Hachisuka ${ }^{3} \quad$ Petr Vévoda $^{1}$<br>Martin Šik ${ }^{1} \quad$ Derek Nowrouzezahrai ${ }^{4} \quad$ Wojciech Jarosz ${ }^{5}$<br>${ }^{1}$ Charles University in Prague $\quad{ }^{2}$ Light Transportation Ltd. ${ }^{3}$ Aarhus University ${ }^{4}$ Université de Montréal ${ }^{5}$ Disney Research Zürich

## 1 Variance Analysis

Fig. 1 shows the normalized standard deviation (NSD) for all the 25 estimators. This is a superset of the graphs shown in Fig. 6 of the paper.


Figure 1: Normalized standard deviation (NSD) as a function of the kernel width for all 25 estimators.

## 2 Extended Balance Heuristic: Derivation

Proof of Theorem 1 from the paper. We follow the optimality proof of the balance heuristic [Veach 1997, Appendix 9.A] while adjusting it for the estimator $F^{\mathrm{C}}$ given by Equation (40) in the paper. We first give a sketch of the proof. The variance of $F^{\mathrm{C}}$ is written as $V\left[F^{\mathrm{C}}\right]=\mathrm{A}-\mathrm{B}$. Both A and B depend on the choice of weighting functions. Finding weighting functions that minimize $A-B$ is difficult, so we follow Veach [1997] and proceed as follows:

1. Find weighting functions that minimize $A$. The result is the extended balance heuristic, Equation (42) in the paper, so no other set of weighting functions can yield smaller A.
2. Derive lower and upper bounds on $B$ that hold for any set of weighting functions $w_{i}$. This provides the variance bound in Theorem 1.

The variance of the combined estimator $F^{\mathrm{C}}$ can be written as

$$
\begin{aligned}
V\left[F^{\mathrm{C}}\right] & =V\left[\sum_{i=1}^{n} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} F_{i, j}^{\mathrm{C}}\right]=\sum_{i=1}^{n} \frac{1}{n_{i}^{2}} \sum_{j=1}^{n_{i}} V\left[F_{i, j}^{\mathrm{C}}\right] \\
& =\underbrace{\left(\sum_{i=1}^{n} \frac{1}{n_{i}^{2}} \sum_{j=1}^{n_{i}} E\left[\left(F_{i, j}^{\mathrm{C}}\right)^{2}\right]\right)}_{\mathrm{A}}-\underbrace{\left(\sum_{i=1}^{n} \frac{1}{n_{i}^{2}} \sum_{j=1}^{n_{i}} E\left[F_{i, j}^{\mathrm{C}}\right]^{2}\right)}_{\mathrm{B}}
\end{aligned}
$$

## Term A.

$$
\begin{aligned}
\mathrm{A}= & \sum_{i=1}^{u} \frac{1}{n_{i}} E\left[\left(w_{i}\left(X_{i, j}\right) \frac{f\left(X_{i, j}\right)}{p_{i}\left(X_{i, j}\right)}\right)^{2}\right] \\
& +\sum_{i=u+1}^{n} \frac{1}{n_{i}} E\left[\left(w_{i}\left(X_{i, j}\right) \frac{f_{i}\left(X_{i, j}, Y_{i, j}\right)}{p_{i}\left(X_{i, j}, X_{i, j}\right)}\right)^{2}\right] \\
= & \sum_{i=1}^{u} \frac{1}{n_{i}} \int_{\mathcal{D}_{x}}\left(w_{i}(x) \frac{f(x)}{p_{i}(x)}\right)^{2} p_{i}(x) \mathrm{d} x \\
& +\sum_{i=u+1}^{n} \frac{1}{n_{i}} \int_{\mathcal{D}_{x}} \int_{\mathcal{D}_{y_{i}}}\left(w_{i}(x) \frac{f_{i}\left(x, y_{i}\right)}{p_{i}\left(x, y_{i}\right)}\right)^{2} p_{i}\left(x, y_{i}\right) \mathrm{d} y_{i} \mathrm{~d} x \\
= & \int_{\mathcal{D}_{x}}\left(\sum_{i=1}^{u} \frac{w_{i}^{2}(x)}{n_{i}} \frac{f^{2}(x)}{p_{i}(x)}+\sum_{i=u+1}^{n} \frac{w_{i}^{2}(x)}{n_{i}}\left[\int_{\mathcal{D}_{y_{i}}} \frac{f_{i}^{2}\left(x, y_{i}\right)}{p_{i}\left(x, y_{i}\right)} \mathrm{d} y_{i}\right]\right) \mathrm{d} x \\
= & \int_{\mathcal{D}_{x}} \sum_{i=1}^{n} \frac{w_{i}^{2}(x) \kappa_{i}(x)}{n_{i}} \mathrm{~d} x
\end{aligned}
$$

where $\kappa_{i}(x)$ is given by Equation (43) in the paper. We want to find the weighting functions that minimize A , subject to $\sum_{i=1}^{n} w_{i}(x)=$ 1 for any $x$. Performing a point-wise minimization as in [Veach 1997, Appendix 9.A] yields the extended balance heuristic, Equation (42) in the paper. No other set of weighting functions can make the term A smaller.

Term B. To derive the desired bounds on the term B, we first let

$$
\begin{aligned}
f_{i}(x) & = \begin{cases}f(x) & \text { if } 1 \leq i \leq u \\
\int_{\mathcal{D}_{y_{i}}} f_{i}\left(x, y_{i}\right) \mathrm{d} y_{i} & \text { if } u<i \leq n .\end{cases} \\
\mu_{i} & \equiv E\left[F_{i, j}^{\mathrm{C}}\right]=\int_{\mathcal{D}_{x}} w_{i}(x) f_{i}(x) \mathrm{d} x
\end{aligned}
$$

and also

$$
\begin{align*}
f^{+}(x)=\max _{i} f_{i}(x) & f^{-}(x)=\min _{i} f_{i}(x) \\
b^{+}(x)=f^{+}(x)-f(x) & b^{-}(x)=f(x)-f^{-}(x) \\
\mu_{i}^{+}=\int_{\mathcal{D}_{x}} w_{i}(x) f^{+}(x) \mathrm{d} x & \mu_{i}^{-}=\int_{\mathcal{D}_{x}} w_{i}(x) f^{-}(x) \mathrm{d} x \\
\beta^{+}=\int_{\mathcal{D}_{x}} b^{+}(x) \mathrm{d} x & \beta^{-}=\int_{\mathcal{D}_{x}} b^{-}(x) \mathrm{d} x \\
\mu^{+}=\int_{\mathcal{D}_{x}} f^{+}(x) \mathrm{d} x=I+\beta^{+} & \mu^{-}=\int_{\mathcal{D}_{x}} f^{-}(x) \mathrm{d} x=I-\beta^{-}
\end{align*}
$$

Above, $f^{-}(x)$ and $f^{+}(x)$ are lower and upper bounds on the contribution of all techniques for any $x$, and $\beta^{-}$and $\beta^{+}$can be interpreted as bounds on the bias of the combined estimator given by Equation (40) in the paper with any valid weighting heuristic. The upper bound of
term B is derived as follows:

$$
\begin{aligned}
\mathrm{B}=\sum_{i=1}^{n} \frac{\mu_{i}^{2}}{n_{i}} & \leq \sum_{i=1}^{n} \frac{\left(\mu_{i}^{+}\right)^{2}}{n_{i}} \\
& \leq \frac{1}{\min _{i} n_{i}}\left(\sum_{i=1}^{n} \mu_{i}^{+}\right)^{2}=\frac{1}{\min _{i} n_{i}} \sum_{i=1}^{n}\left(\mu^{+}\right)^{2} .
\end{aligned}
$$

To derive the lower bound of term B, we write

$$
\begin{equation*}
\mathrm{B}=\sum_{i=1}^{n} \frac{\mu_{i}^{2}}{n_{i}} \geq \sum_{i=1}^{n} \frac{\left(\mu_{i}^{-}\right)^{2}}{n_{i}} . \tag{2}
\end{equation*}
$$

We want to minimize the above expression subject to $\sum_{i} \mu_{i}^{-}=\mu^{-}$. The method of Lagrange multipliers [Veach 1997, Appendix 9.A] yields the lower bound of

$$
\begin{equation*}
\frac{1}{\sum_{i=1}^{n} n_{i}}\left(\mu^{-}\right)^{2} . \tag{3}
\end{equation*}
$$

## References

VEACH, E. 1997. Robust Monte Carlo methods for light transport simulation. PhD thesis, Stanford, CA, USA.

