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Abstract
Efficient Monte-Carlo estimation of volumetric single scattering remains challenging due to various sources of variance, in-
cluding transmittance, phase-function anisotropy, geometric cosine foreshortening, and squared-distance fall-off. We propose
several complementary techniques to importance sample each of these terms and their product. First, we introduce an extension
to equi-angular sampling to analytically account for the foreshortening at point-normal emitters. We then include transmittance
and phase function via Taylor-series expansion and/or warp composition. Scaling to complex mesh emitters is achieved through
an adaptive tree-splitting scheme. We show improved performance over state-of-the-art baselines in a diversity of scenarios.

CCS Concepts
• Computing methodologies → Rendering;

1. Introduction

Simulating single scattering in volumetric participating media is a
long-standing problem in image synthesis where effective numer-
ical solutions exist in only limited contexts. These include some
recent importance sampling methods whose simplicity and efficacy
have earned them notable adoption in the industry. However, the
single-scattering problem involves many terms, yet existing impor-
tance sampling methods tend to focus on only a small subset of
them, remaining susceptible to high estimation variance.

Computing single scattering often requires integrating the contri-
bution of a point emitter – potentially attached to a surface – along
a camera ray. Estimates of this contribution can suffer from vari-
ance due to various factors: geometric terms, transmittance along
the path, phase function anisotropy. Here, techniques exist to in-
dividually importance sample some of these terms. Our goal is to
approach a full-product sampling solution that incorporates varia-
tions due to their composition. Concretely, our contributions are:
• a new point-normal primitive to analytically sample the fore-

shortening and inverse-squared fall-off for an oriented emitter;
• an extension of point-normal sampling to include transmit-

tance and/or phase function without pre-tabulation; and,
• improved performance compared to the state of the art, sup-

porting scalable solutions for mesh lights.

Our approach is based on (non-uniform) sampling in the angu-
lar domain subtended by the point emitter and the ray [KF12]. Our
derivations assume emitters contained in a homogeneous partici-
pating media; the resulting estimators remain unbiased for emitters
outside the media and/or heterogeneous media, at the cost of extra
variance.

2. Related work

Our work focuses on the contribution of a point emitter along a
ray in scattering media. While analytical solutions exist in certain
settings [PP09], we seek low-variance importance sampled Monte-
Carlo estimators. Below, we summarize the most relevant prior art;
we refer to Novak et al. [NGHJ18] for a thorough review.

Distance sampling. A classical approach for sampling distances
in media is proportionally to transmittance [PJH16]. Equi-angular
sampling instead targets the inverse squared distance fall-off of a
given point source [KF12]. The two techniques can be combined
via multiple importance sampling [VG95], which however corre-
sponds to sampling from their mixture. Our work aims to develop
techniques that directly treat the product of multiple contributing
terms, such as the geometry factor (combining the inverse square
fall-off with a cosine foreshortening at the emitter), transmittance
(along with view and emission path segments), and phase function.

Product sampling. Many works address the importance sampling
of a product of terms. Most recently, Hart et al. [HPM∗20] com-
posed individual sampling routines to approximate their product
in a surface-illumination setting; we utilize their method for volu-
metric scattering. Bitterli et al. [BWP∗20] improved the efficacy of
importance resampling [TCE05], leveraging inter-pixel and inter-
frame sample reuse in a well-founded manner. Our approach re-
mains compatible with that reuse strategy.

Georgiev et al. [GKH∗13] proposed an inversion- and tabulation-
based method to importance sample volumetric paths of up to
two bounces. For more bounces, path guiding is a general poste-
rior sampling approach using cached radiance distributions in the
scene. Herholz et al. [HZE∗19] presented a volume path guiding
method based on zero-variance random walks, whereas Deng et
al. [DWWH20] adapted practical path guiding [MGN17] to media.
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Emitter sampling. Analytic methods for sampling illumination
from polygonal emitters exist [Arv95, UnFK13], but more com-
plex emitter shapes require numerical solutions. Estevez and
Kulla [EK18] proposed traversing a tree of light-source primitives,
accounting for emitter orientation and distance through hierarchi-
cal importance sampling [MH97]. Yuksel [Yuk20] instead used
a tailored importance function to avoid splitting during traversal.
Vevoda et al. [VKK18] included a visibility factor that is continu-
ously updated during emitter sampling using Bayesian statistics.

3. Angular-domain importance sampling

We start by considering single scattering in media due to a point
source p at all locations rt = x+ t ·ωωω along an eye ray r = (x,ωωω):

L =
∫ tmax

tmin

Le(p,rt)ρ(x,rt ,p)T (x,rt)T (rt ,p)G(rt ,p)
f (t)

dt, (1)

where Le is the emitted radiance, ρ(x,rt ,p) is the phase function
(including the scattering coefficient µs(rt)), T (x,y) = e−

∫ y
x µt(z)dz

is the volumetric transmittance, and µt is the extinction coeffi-
cient. In the geometry factor G(rt ,p) = N(p,rt)/‖p− rt‖2, the
term N(p,rt) is the light-source cosine foreshortening if the point
source p is on a surface and 1 otherwise. The integration bounds
{tmin, tmax} are determined by the ray’s entry and exit points.

Solving Eq. (1) requires numerical estimation in the general
case. To that end, Kulla and Fajardo [KF12] proposed to first con-
vert the integration to an angular domain, where θ is the angle
subtended by the point source p along the ray, as in Fig. 1, left.
The derivative of the associated transformation t(θ) = h tanθ+ th
is d

dθ
t(θ) = h2+(h tan θ)2

h =
‖p−rt‖2

h , where h is the (perpendicular)
distance between the point p and the ray r, and th is the offset of p’s
projection from the ray origin x. Applying this change of variable
to Eq. (1), and also assuming uniform emission profiles, yields the
integral

L =
∫ θmax

θmin

f (t(θ))
d

dθ
t(θ)dθ =

Le

h

∫ θmax

θmin

ρ(θ)T (θ)N(θ)dθ, (2)

where the squared distance ‖p− rt‖2 term in the transformation
derivative and in the G factor cancels out [KF12]. Moving to the
angular domain thus eliminates variation due to this (now canceled)
term; in turn, estimators for Eq. (2) will implicitly importance sam-
ple the inverse square of that distance. The cosine foreshortening,
transmittance, and phase function are now also parameterized by
the angle θ; we define them below in Eqs. (4), (8) and (9). The
integration domain can be clamped based on {tmin, tmax} and the
directional emission profile of the light source modeled by N(θ).
The resulting angular bounds {θmin,θmax} exclude regions where
the emitter is back-facing the ray.

The general one-sample Monte-Carlo estimator for Eq. (2) has
the form

〈L〉= Le

h
· ρ(θ)T (θ)N(θ)

p(θ)
, (3)

where θ ∈ [θmin,θmax] is sampled with density p(θ). Kulla and Fa-
jardo [KF12] used a uniform density p(θ) = 1

θmax−θmin
, and the re-

sulting equi-angular sampling technique is a straightforward and

tmin th t

x rt ωωω

tmax

h

h
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Figure 1: Single-scattering integration from a point source p
along a ray (x,ωωω), parameterized by the angle θ subtended at the
source (left). When p is on a surface, a foreshortening term ap-
pears that equals the dot product between the (blue) θ-direction
vector and the projection n⊥ of the surface normal onto the plane
through p and the ray (top right). The phase function ρ can also be
easily parameterized by θ (bottom right).

powerful method in the toolkit of volumetric rendering. However,
this uniform distribution does not importance sample any of the re-
maining contribution terms in Eq. (3). In the remainder of this sec-
tion, we present our main contribution, which comprises a series
of methods to importance sample these terms through non-uniform
sampling of θ.

3.1. Analytical point-normal sampling

When the point source p is on a surface, the foreshortening factor
N(p,rt) = N(θ) is the cosine of the angle between that surface’s
normal n and the vector rt −p. In the local frame (p,ωωω,h), where
h is the direction from p toward the ray, the coordinates of that
normalized vector are (cosθ,sinθ,0). Since the last coordinate is
zero, the sought cosine equals the dot product between the 2D vec-
tors θθθ = (cosθ,sinθ) and the projection n⊥ = (n · h,n ·ωωω) of the
normal onto the plane ωωωh (see Fig. 1, top right):

N(θ) = θθθ ·n⊥ = (n ·h)cosθ+(n ·ωωω)sinθ. (4)

Our aim is to sample an angle θ proportionally to N(θ):

pN(θ) = acosθ+bsinθ, a=
n·h
n
, b=

n·ωωω
n

, n=
∫ θmax

θmin

N(θ)dθ, (5)

PN(θ) = a(sinθ− sinθmin)−b(cosθ− cosθmin), (6)

where pN(θ) and PN(θ) are respectively the desired PDF and CDF.
We can sample an angle θ from this density by transforming canon-
ical uniform variates ξ ∈ [0,1) using the inverse CDF: θ = P−1

N (ξ).
Symbolic inversion of Eq. (6) yields the expression

θ = arctan
(
|a|c ± sgn(a)bd
−bc ± d|a|

)
, (7)

where c = ξ+ asinθmin− bcosθmin and d =
√

a2 +b2− c2. This
expression provides two θ values, only one of which is between
θmin and θmax and is thus our valid, retained sample.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



K. Villeneuve, A. Gruson, I. Georgiev, D. Nowrouzezahrai / Practical product sampling for single scattering in media

3.2. Approximate product sampling

In homogeneous media we can evaluate the transmittance over the
entire path length, t +‖p−rt‖= h tanθ+ th +hsecθ, as a function
of θ (see Fig. 1, left). For the Henyey-Greenstein phase function
ρHG, which is already a function of angle, the θ reparameterization
is straightforward (see Fig. 1, bottom right), completing the defini-
tion of the terms in the Monte Carlo estimator (3):

T (θ) = e−µt(h (tan θ+sec θ)+th) = e−µth (tan θ+sec θ)e−µtth , (8)

ρ(θ) = ρHG

(
θ+

π

2

)
=

1
4π

1−g2

(1+g2 +2gsinθ)3/2
, (9)

where we have used cos(θ+π/2) =−sinθ to simplify the expan-
sion of ρHG, parameterized by the anisotropy g. Note that in T (θ)
only the left exponential term is a function of θ, and it also depends
on a single parameter, µth. The right exponential is a scaling factor
that would cancel out should T (θ) be normalized to a valid PDF.

While the foreshortening N(θ) can be sampled analytically, the
above two terms do not admit analytic solutions in θ and require
approximation. (Note that ρHG admits analytic sampling only over
the sphere, facilitated by the sinθ factor in the Jacobian determi-
nant of the change of variables from solid angle to spherical coor-
dinates.) To that end, we derive analytically integrable polynomial
approximations of the transmittance and phase function for efficient
importance sampling.

Polynomial expansion. Our first approximation is a Taylor expan-
sion around θ0 = 0; a function f (θ) is approximated by

T f (θ) =
order

∑
k=0

f (k)(0)
k!

θ
k. (10)

We consider f being either ρ or T . The expansion can be multi-
plied with N(θ) (4) to model the product with the emitter cosine
foreshortening. The PDF and CDF of that product are respectively

pN∗ f (θ)=
N(θ)T f (θ)

CN∗ f (θmin,θmax)
, PN∗ f (θ)=

CN∗ f (θmin,θ)

CN∗ f (θmin,θmax)
, (11)

where CN∗ f (a,b) =
∫ b

a N(θ)T f (θ)dθ. Analytical expressions for
CN∗ f exist for f ∈ {ρ,T}, which can be obtained through integra-
tion by parts or a computer algebra system. The full derivation of
those expressions can be found in the supplemental document.

Sampling still requires inverting the CDF PN∗ f , which is gen-
erally infeasible analytically. Fortunately, the numerical Newton-
Raphson inversion technique is ideally suited to the monotonic
shape of CDFs. We employ an additional interval bisection to safe-
guard against out-of-range solution estimates due to small CDF
derivatives, as described by Ureña and Georgiev [UG18].

We considered performing the Taylor expansion around θ0 =
(θmin + θmax)/2, but the improved accuracy did not offset the in-
creased expansion complexity. The choice of expansion order also
impacts the approximation quality, especially away from the ex-
pansion point: higher orders provide better approximations but at
an increased computational cost. Even a costly order-14 approx-
imation T f can significantly overshoot the ground truth and also
produce negative values. For f ∈ {ρ,T}, we found that such gross
inaccuracies occur for angles θ ∈ [θclamp,θmax] where the original

Original function Taylor expansion Taylor expans. (fixed)
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-π/2 π/2θ -π/2 π/2θ -π/2 π/2θ

Figure 2: Plots of the transmittance (8) (top) and phase func-
tion (9) (bottom) and their Taylor expansions. The angle θ varies
horizontally and the configuration parameters, µth and g respec-
tively, vary vertically. For high θ values (not too often encountered
in practice), the expansions (middle) can overshoot the ground
truth or have negative values (in red). To that end, for each of the
two functions we find the θclamp values where these issues begin
occurring, which we plot as dotted curves. For each configuration
(i.e. scanline) we then replace the Taylor expansion at θ > θclamp
by a constant function: the expansion value at θclamp (right).

function g actually has a simple, near-constant shape. We thus set
T f (θ) to a constant function with value T f (θclamp) inside the in-
terval [θclamp,θmax]. The value of θclamp depends on the geometric
configuration and the expansion order. For order-6 expansion of
transmittance and phase function, we have fitted curves for θclamp
as functions of the configuration parameters (see Fig. 2):

θclamp,T = e0.210824−0.15974 µth, (12)

θclamp,ρ = 18.82−93.9g+184.2g2−160.2g3+51.77g4. (13)

We have obtained these curves by first manually identifying good
θclamp values for many configurations (i.e. vertical coordinates in
Fig. 2) and then seeking for the best-fit expression across a range of
simple function parameterizations. This constant-function fix im-
proves the expansion accuracy without increasing its order.

Polynomial interpolation. An alternative way to construct a poly-
nomial PDF approximation for f (θ) is via interpolation. Hart et
al. [HPM∗20] proposed to build a quadratic Bezier PDF interpolant
by evaluating f at three locations: θmin, (θmin+θmax)/2, and θmax.
The corresponding CDF polynomial is then cubic and analytically
invertible. We use double precision for the inversion to avoid poten-
tial loss of precision in cases where the coefficient of θ

3 is small.

Warp composition. The two aforementioned approximation
schemes have mild requirements on the given function f : dif-
ferentiability for Taylor expansion and evaluability for interpo-
lation. They could thus be used to importance sample not only
the individual contribution terms in the radiance estimator (3) but
also their full product. However, high efficiency requires a low-
order approximation, which is not sufficiently expressive to pro-
vide effective importance sampling of that product. Instead, we
follow Hart et al. [HPM∗20] to perform approximate product sam-
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Algorithm 1: Approximate full-product importance sampling
for the radiance estimator (3) through the warp composition
Bh(N ∗T f ), where ξ ∈ [0,1) is a random number, and one of f
and h is transmittance T and the other one is phase function ρ.
In the code, Pclamp is the probability of sampling θ in the region
[θmin,θclamp] proportionally to the product N ∗ T f . For the rest of
the domain, [θclamp,θmax], T f is forced to be constant (e.g. see
Fig. 2), so we apply only our analytic point-normal sampler N.

1: function SAMPLEPRODUCT(θmin, θmax, θclamp, f , h, ξ)
2: Pclamp← PN∗ f (θclamp) ←←← Pclamp =

∫ θclamp
θmin

pN∗ f (θ)dθ

3: if Pclamp > ξ then ↓↓↓ numerical inversion of PN∗ f (θ) (11)

4: θ0← NewtonRaphson(θmin,θclamp,ξ/Pclamp)
5: p0← pN∗ f (θ) ·Pclamp
6: else
7: θ0← SamplePointNormal

(
θclamp,θmax,

ξ−Pclamp
1−Pclamp

)
←←← Eq. (7)

8: p0← pN(θ) · (1−Pclamp) ←←← Eq. (5)

9: (θ1, p1)←WarpBezier
(
h, θ0−θmin

θmax−θmin

)
←←← rescale θ0 to [0,1)

10: return (θ1, p0 · p1)

pling by composing sampling techniques. Specifically, we apply
our Taylor-expansion scheme to the product of foreshortening and
transmittance/phase and warp that through a Bezier curve model-
ing phase/transmittance. Algorithm 1 shows pseudo-code of this
approach. Our guideline is to apply the more accurate Taylor-
expansion approximation to the term (transmittance or phase) with
larger variation. For example, with a highly anisotropic phase func-
tion one would warp the product N ∗Tρ through a Bezier curve BT ,
to obtain the composition BT (N ∗Tρ).

4. Results

We benchmark combinations of the techniques from the previ-
ous section: analytic point-normal N sampling, Taylor-expansion
T f sampling of f ∈ {T,ρ}, sampling the product N ∗ T f , Bezier-
interpolation B f sampling of f ∈ {T,ρ}, as well as composition-
based approximate product sampling through Bezier warping, e.g.
the product N ∗ ρ through Bρ(N) or N ∗ ρ ∗ T through BT (N ∗
Tρ). We measure the symmetric mean absolute percentage er-
ror (SMAPE): E = 1

P ∑
P
i=1
|ri−ei|
|ri|+|ei| , where ri and ei are the reference

and estimated values for the i-th pixel, respectively.

Point lights. We begin with an equal-time comparison on scenes
with point and point-normal emitters and with isotropic and
anisotropic (g = 0.9) phase functions, shown in Fig. 3. We ob-
serve that in all results our techniques produce the best results,
demonstrating the benefit of product sampling. For the isotropic-
phase point-normal setting we also tried the BT (N) technique, but
the more accurate product sampling N ∗ TT yielded consistently
lower variance. Figure 4 shows plots of the variance of our tech-
niques relative to the equal-sample variance of equi-angular sam-
pling [KF12], for a range of ray-emitter configurations. Our tech-
niques deliver major variance reduction in most cases.
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Figure 3: Equal-time comparisons on different point-emitter prim-
itives and phase functions. In every scenario our product sampling
and composition achieves the best results. See the description of
the technique notation at the top of Section 4.
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Figure 4: Variance plots of our techniques relative to equal-
sample equi-angular sampling [KF12] under different emitter con-
figurations (top-row illustrations), for isotropic (middle row) and
anisotropic (g = 0.9; bottom row) phase functions. Our samplers
substantially reduce variance, except when our product approxi-
mation introduces more error than a uniform (a.k.a. equi-angular)
distribution. One such case is when rays span clamping angle re-
gions, where our samplers perform similarly to equi-angular sam-
pling (i.e. the variance ratio is around 1). Another case is when
rays are very close to the emitter (bottom scanlines in the plots).
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Figure 5: Equal-sample renders of a quad light scaled down by
2× in each column (retaining the same total power). For a given
point-normal on the quad, our N ∗ TT technique importance sam-
ples the product of all contribution terms in this isotropically scat-
tering media. However, the point-normal is sampled uniformly, and
the resulting variance can be high when the emitter is large.

Rectangular light. Our next example uses a (textured) rectangu-
lar emitter in an isotropically scattering media, shown in Fig. 5.
We first sample a point-normal uniformly on the emitter surface,
then employ our N ∗TT technique. Larger area lights exhibit higher
variance due to the uninformed surface-area sampling; as the emit-
ter area shrinks, we approach our technique’s ideal (point-normal)
configuration.

Mesh lights. More complex (e.g. mesh) lights require a better sur-
face sampling strategy. We apply the adaptive tree splitting of Kulla
et al. [KCSG18] with their linear geometric fall-off factor and a
splitting factor of 0.04. Once a triangle has been selected, we sam-
ple a point uniformly on it. Figure 6 shows an equal-sample com-
parison on a scene with an isotropic phase function, and Fig. 7
shows an equal-time comparison with an anisotropic phase func-
tion (g = 0.8). In both scenes, our techniques achieve appreciable
level of variance reduction at the cost of slightly longer rendering
time or smaller sample counts, respectively.

Newton solver analysis. We validate the applicability of our semi-
analytic solution in cases where an iterative Newton-Raphson
solver is used to invert the sampling CDF. In Fig. 8, we visualize
the average number of iterations taken per pixel across four scenes.
The results show that relatively few iterations are needed in prac-
tice: 3-4 steps for all scenes but the one in Fig. 7 (5.7 steps).

4.1. Discussion

We now summarize our findings with takeaways to guide the appli-
cation of our various proposed solutions:
• Analytic point-normal sampling is a lightweight improvement

to equi-angular sampling when dealing with area light sources.
• To sample the product of point-normal with either transmit-

tance or phase function, the most effective option is to use our
semi-analytical Taylor expansion scheme, i.e. N ∗TT or N ∗Tρ

respectively. This scheme outperforms the Bezier-warp alter-
native, respectively BT (N) or Bρ(N).
• Sampling the full product makes most sense in optically thick

and highly anisotropic media, where the preferred solution is
our BT (N ∗Tρ) sampler. When the scattering anisotropy is not

Equi-angularEqui-angular

43.9 sec43.9 sec

Ours: point-normal NOurs: point-normal N

44.9 sec44.9 sec

Ours: product N ∗TTOurs: product N ∗TT

49.7 sec49.7 sec

0.06160.0616 0.05140.0514 0.04910.0491 0.00.0

0.10.1

SM
A
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A
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Figure 6: Equal-sample (1 spp) comparison on a scene with a
mesh light and isotropic phase function. Bottom row shows false-
color SMAPE images. Our point-normal and product sampling
techniques achieve the lowest error.

extreme, a good alternative is Bρ(N ∗TT ) which uses the more
accurate Taylor approximation for the transmittance.

• When using mesh lights, a good supplemental emitter sam-
pling approach is essential for reducing the variance due to
spatial emission variation. We employ adaptive tree split-
ting [KCSG18] with reasonable results.

5. Conclusion

We presented a suite of sampling techniques to reduce the variance
of Monte-Carlo single-scattering estimation in media. Our point-
normal primitive generalizes equi-angular sampling by additionally
accounting for cosine foreshortening, while our Taylor-expansion
approach addresses variations due to phase-function anisotropy or
transmittance.

Our method is compatible with existing techniques, including an
adaptation of warp-composition sampling [HPM∗20] to the volu-
metric regime, to consistently outperform the state-of-the-art in di-
verse settings. We release our full source code to facilitate straight-
forward integration into physics-based renderers.

Specializing our approaches directly to planar lights is an in-
teresting avenue for future work. So too would be an extension
to heterogeneous media, perhaps using an adaptive generalization
of our Taylor-based sampling approach. Finally, our method as-
sumes direct light source visibility, i.e. without intermediate in-
teractions with refractive medium boundaries. It would be inter-
esting to revisit techniques that handle such interactions explic-
itly [WZHB, Hol15].
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Figure 7: Equal-time (300 sec) comparison between our full-product sampling technique and equi-angular sampling on a scene with a
complex mesh light and an anisotropic phase function (g = 0.8). Our technique significantly reduces the variance. The right half of each
image shows false-color SMAPE.
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Figure 8: False-color visualizations of the average number of
Newton-Raphson steps taken per pixel by the Taylor-expansion
technique used in the corresponding figure.
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