Practical product sampling for single scattering in media

Keven Villeneuve, Adrien Gruson, Iliyan Georgiev, Derek Nowrouzezahrai

Motivation

Motivation Equi-angular [KF12]

Cosine Foreshortening Phase function Transmittance

...

Motivation

Equi-angular [KF12]

Ours

Related Work

Equi-angular Sampling [Kulla et Fajardo 2012]

$$L = \frac{L_e}{h} \int_{\theta_{min}}^{\theta_{max}} \rho(\theta) T(\theta) N(\theta) d\theta$$

$$\langle L \rangle = \frac{L_e}{h} \cdot \frac{\rho(\theta) T(\theta) N(\theta)}{p(\theta)}$$

$$p(\theta) = \frac{1}{\theta_{max} - \theta_{min}}$$

Related Work

Equi-angular Sampling [Kulla et Fajardo 2012] Clamped cosine: θ_{max} , θ_{min}

$$L = \frac{L_e}{h} \int_{\theta_{min}}^{\theta_{max}} \rho(\theta) T(\theta) N(\theta) d\theta$$

$$\langle L \rangle = \frac{L_e}{h} \cdot \frac{\rho(\theta)T(\theta)N(\theta)}{p(\theta)}$$

 $p(\theta) = \frac{1}{\theta_{max} - \theta_{min}}$

$$\theta_{max}$$

$$\theta_{min}$$

$$L(\mathbf{x}, \boldsymbol{\omega}) = 0$$

Analytical Point-normal Sampling

$$L = \frac{L_e}{h} \int_{\theta_{min}}^{\theta_{max}} \rho(\theta) T(\theta) N(\theta) d\theta$$

$$\langle L \rangle = \frac{L_e}{h} \cdot \frac{\rho(\theta) T(\theta) N(\theta)}{p(\theta)}$$

 $p(\theta) \propto N(\theta)$

 $N(\theta) = \boldsymbol{\theta} \cdot \mathbf{n}^{\perp} = (\mathbf{n} \cdot \mathbf{h}) \cos \theta + (\mathbf{n} \cdot \boldsymbol{\omega}) \sin \theta$

Equi-angular (43.9 sec)

Ours: N(44.9 sec)

0.0514

Approximated Transmittance/Phase function Taylor Expansion

Approximated Product Sampling

 $p(\theta) \propto \mathcal{T}_{\rho}(\theta) N(\theta)$ or $p(\theta) \propto \mathcal{T}_{T}(\theta) N(\theta)$

Semi-analytical Sampling

Approximated Product Sampling

$$L = \frac{L_e}{h} \int_{\theta_{min}}^{\theta_{max}} \rho(\theta) T(\theta) N(\theta) d\theta$$

- Do Taylor Expansion of \mathcal{T}_{T*P}
- Uses [Hart et al. 2020]'s idea

Summary

- Summary:
 - New analytical method to sample cosine foreshortening and distance falloff
 - Approximate product sampling via Taylor expansion
 - Full approximate product with one warp composition
- Future work:
 - Specialize to planar lights, mesh lights, ...
 - Extend to heterogeneous media
 - Handle refractive medium boundaries

Thank you for your attention :)