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Abstract

Resampling is the process of selecting from a set of candidate samples to achieve a distribution (approximately) proportional to a
desired target. Recent work has revisited its application to Monte Carlo integration, yielding powerful and practical importance
resampling methods. One drawback of these methods is that they cannot generate stratified samples. We propose a method to
achieve efficient stratification. We first introduce a discrete sampling algorithm which yields the same result as conventional
inverse CDF sampling but in a single pass over the candidates, similarly to reservoir sampling. The algorithm traverses the
candidate list adaptively from both ends, without needing to store them. We order the candidates along a space-filling curve to
ensure that stratified CDF sampling of candidate indices yields stratified samples in the integration domain. We showcase our
method on various resampling-based rendering problems.

CCS Concepts
• Computing methodologies → Rendering;

1. Introduction

Resampling is a powerful method for approximately sampling from
distributions that are difficult to handle directly. The basic approach
is to stochastically select from a list of candidate samples (coming
from another, known distribution), where the selection probability
of each candidate is proportional to an associated weight. Judi-
cious setting of these weights makes the resulting samples drawn
approximately proportionally to a chosen target distribution. Tal-
bot et al. [TCE05] showed how resampling can efficiently generate
product-sampled ray directions for complex BSDFs and incident-
radiance distributions. More recently, Bitterli et al. [BWP∗20] ap-
plied such resampling to spatio-temporal reuse of path samples.

Two common algorithms for resampling are inverse cumu-
lative distribution function (CDF) sampling and reservoir sam-
pling [Cha82, Efr10]. The former precomputes a CDF from the
candidate weights and inverts it to select a sample. The latter is a
precomputation-free alternative that can select a sample according
to the desired distribution in a single pass over all candidates.

To date, the key difference between the aforementioned two algo-
rithms is understood as the need or absence of a precomputed CDF.
We show that another significant difference lies in their stratification
abilities. Put briefly, inverse CDF sampling can potentially transfer
the stratification of the input canonical samples (e.g., coming from a
low-discrepancy sequence) to the output samples, whereas reservoir
sampling cannot. We also show that neither approach retains strati-
fication when the sampling domain has more than one dimension.
This latter limitation is due to the fact that resampling is always

performed on the 1D space of candidate indices, thus the order-
ing of candidates impacts the output samples. As such, no efficient
approaches exist to produce stratified samples with resampling.

We propose a solution to this problem. Our bidirectional CDF
sampling algorithm combines the strengths of inverse CDF sampling
and reservoir sampling, without their limitations. Specifically, it
yields the same output as inverse CDF sampling (i.e., can retain
input stratification), but in a single pass over the candidates, like
reservoir sampling. This is achieved via an adaptive traversal of
the candidate list from both ends. We augment this algorithm with
candidate ordering along a space-filling curve to form a bijective
map that preserves the locality of high-dimensional samples in their
1D index space. A similar idea has been used successfully in the
context of importance sampling [SM03], and we show how it can
be used for resampling.

Combining bidirectional CDF sampling with candidate ordering
enables the first single-pass resampling method that achieves output
stratification. An additional benefit of our method is that it can be
easily combined with techniques that impose a blue-noise error
distribution in image space [GF16], further improving the visual
result. We demonstrate the benefits of our method across various
light-transport simulation settings. Our novel contributions include:

• A resampling algorithm that yields identical results to classical
inverse CDF sampling but in a single pass over the candidates;
• Ordering of candidates along a space-filling curve; and
• A practical stratified resampling-based rendering algorithm that

exhibits blue-noise distribution of image error.
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L2 error: 3.330×10−5 L2 error: 1.120×10−5

(a) Reservoir + 1D QMC + rescaling (b) Reservoir + MD QMC

L2 error: 5.205×10−5 L2 error: 0.005×10−5

(c) CDF + independent samples (d) CDF + 1D QMC

Figure 1: Histogram comparison between reservoir sampling
with rescaled 1D Sobol (i.e., van der Corput) samples (a) and M-
dimensional Sobol samples (b), and inverse CDF sampling with 1D
independent samples (c) and 1D Sobol samples (d). Sampling is
done proportionally to Gaussian weights. Neither reservoir sam-
pling variant retains the input’s stratification; inverse CDF sampling
does, producing a substantially lower L2 histogram error.

2. Motivation

We begin by reviewing the problem of stratification in importance
resampling. We show two experiments to motivate our contributions.

Importance resampling [Rub87] aims to sample proportionally to
a target function q by selecting from M candidate samples {yk}M

k=1
drawn from some probability density function (PDF) p. A weight
wk = q(yk)/p(yk) is associated with each candidate, and an index
j is sampled with probability proportional to the weight: P( j) =
w j
/

∑
M
k=1 wk. The PDF of the output sample x = y j approaches

proportionality to the target q as M→∞. Talbot et al. [TCE05]
showed how to construct an unbiased Monte Carlo (MC) estimator
for an integral (refer to Talbot [Tal05] for in-depth discussions):∫

H
f (x)dx ≈ 1

N

N

∑
i=1

f (xi)

q(xi)

(
1
M

M

∑
k=1

wk

)
, (1)

which averages over N samples drawn from M candidates. In this
work we consider integration over a unit hypercubeH of problem-
dependent dimension, a.k.a. primary sample space. Sampling in this
space is traditionally uniform; the integrand f may internally warp
x to the native integration domain (e.g., unit sphere, or path space,
with an appropriate Jacobian). In our case, the candidates yk are
uniform (with p(yk) = 1) but the final samples xi generally are not.

As usual in MC integration, variance is reduced when the samples
xi are stratified. Achieving this efficiently is the goal of our work.
Next we show that it requires a suitable resampling algorithm and
careful candidate ordering, and why existing methods struggle.

2.1. Stratification of sampled indices

Consider the problem of sampling a candidate index j. The con-
ventional approach is to select it as j = F−1(u), where u ∈ [0,1) is
a canonical uniformly distributed input sample and F−1 is the in-
verse CDF of P. The mapping of the unit line to the index space via

(a) 2D candidates (b) QMC order (c) Our method

Figure 2: The ordering of resampling candidates can substantially
affect the stratification of the output samples. (a) We generate M =
8,192 Sobol samples on the unit square and weight them by a
2D Gaussian target function. We then select N = 256 of them via
stratified inverse CDF sampling. (b) Processing the candidates in
their Sobol-sequence generation order produces no stratification in
the output. (c) Ordering the candidates using our proposed method
(Section 4) yields stratified unit-square samples.

F−1 typically preserves the locality, thus a set of N well-distributed
canonical input samples yield N well-distributed indices.

As an alternative to inverse CDF sampling, reservoir sampling
avoids any CDF computation, and keeps track of only one selected
candidate as it sweeps over the candidates once. For each observed
candidate, a canonical sample is consumed to decide whether to
replace the candidate in the reservoir. Reservoir sampling thus re-
quires M canonical samples to sample a single index j. In an attempt
to obtain N stratified output indices, we consider two options. One
is to use a set of N M-dimensional stratified canonical samples and
consume one dimension of each for every reservoir decision. A
low-discrepancy sequence like Sobol’s [Sob67] can produce such
an input. The second option is to use only N canonical random num-
bers but repeatedly shift and scale each for every reservoir decision,
much like probability-tree traversal [MH97, Oga21].

Figure 1 compares histograms of inverse CDF sampling, with and
without a stratified input, and reservoir sampling using the two afore-
mentioned techniques. There are M = 50 candidates with Gaussian
weights. We repeat the resampling process N times before estimat-
ing the samples’ distribution. Both reservoir variants fail to preserve
input stratification, producing histograms resembling that of inverse
CDF sampling with independent input samples. In contrast, feeding
stratified samples to inverse CDF sampling produces a high-quality
distribution, but at the cost of precomputing and storing a CDF.

2.2. Impact of candidate order

One may intuitively expect a stratified resampling algorithm to
yield stratified samples whenever the candidates themselves are
stratified. However, this is not always true, as we illustrate in Fig. 2.
We generate M stratified candidates on the unit square using a 2D
Sobol sequence (Fig. 2a), which we then resample to produce N <
M samples distributed approximately according to a 2D Gaussian
function. Even though we employ stratified inverse CDF resampling
(using a 1D Sobol sequence), the resulting samples in Fig. 2b are not
well stratified. Contrast this result to that in Fig. 2c which exhibits
improved stratification; the only difference is that we have applied
our proposed candidate ordering scheme. The takeaway here is that
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Figure 3: Overview of our algorithm. Sorted 1D stratified sam-
ples are mapped onto a space-filling curve to produce stratified
candidates yk on the unit hypercube. We resample these candidates
along the curve proportionally to their associated weights using our
on-the-fly bidirectional CDF sampling. Stratifying the resampling
input u yields stratified output integration samples x.

resampling operates only on the candidate indices, oblivious to
the fact that they may correspond to points in a high-dimensional
integration space. Stratification in the 1D index space thus may not
correspond to stratification in the integration space, unless care is
taken when mapping samples to indices.

2.3. Problem statement and overview

The above two experiments reveal two problems that need to be
solved in order to achieve stratified resampling. The first is that
stratification in the input canonical samples should be preserved
by the index sampling algorithm. While inverse CDF sampling has
the potential to achieve this, it may not be a viable option as it
requires precomputation. As Bitterli et al. [BWP∗20] pointed out,
when resampling at every image pixel in parallel, it is desirable
to use a method that avoids precomputation, as reservoir sampling
does. The second problem is that a stratified resampling algorithm
must be paired with an appropriate candidate ordering that retains
locality between the sampling domain and the index space, so that
stratified index selection translates to stratified output samples.

To solve the first problem, in Section 3 we propose a new algo-
rithm that returns the same output as inverse CDF sampling but
in a single pass, without precomputation or candidate storage, like
reservoir sampling. In Section 4 we show that the second problem
can be solved by ordering the candidates along a space filling curve
in the hypercube. Figure 3 illustrates our overall algorithm.

Algorithm 1: Our bidirectional CDF sampling algorithm.
Input :{w1, . . . ,wM}: weights, u ∈ [0,1): random number
Output :Sampled index

1 Function BidirectionalCDF({w1, . . . ,wM}, u):
2 front← 1
3 back←M
4 wfront← wfront
5 wback← wback
6 while front ̸= back do
7 if wfront ≤ u · (wfront +wback) then
8 front← front+1
9 wfront← wfront +wfront

10 else
11 back← back−1
12 wback← wback +wback
13 return front

3. Single-pass bidirectional CDF sampling

We propose a new discrete sampling algorithm that bands together
the advantages of inverse CDF sampling and reservoir sampling.
It scans the list of candidates only once, processing them one by
one without keeping any in memory, similarly to reservoir sampling.
Crucially, it can produce stratified output like inverse CDF sampling.

Reservoir sampling processes a list of candidates in a streaming
manner. We additionally assume that it is possible to also read the
list backward from its tail. As we will discuss later (Section 6),
this additional constraint is typically not a limitation in practical
rendering applications.

We process the list of candidates one by one, from both ends. We
keep track of a front index and a back index, respectively, and the
corresponding running sums of weights wfront and wback. Given an
input sample u ∈ [0,1), at each step we increment front if wfront ≤
u · (wfront +wback), or decrement back otherwise, and update the
corresponding running weight sum. We terminate when front = back
which we take as the sampled index j. We provide pseudocode in
Alg. 1. Note that the algorithm does not require any precomputation
and has a constant storage cost, just like reservoir sampling.

In Appendix A we prove that the result of our algorithm is exactly
the same as that of inverse CDF sampling. To that end, we show that
in both algorithms the output index j satisfies

j−1

∑
i=1

wi ≤ u·w <
j

∑
i=1

wi, (2)

where w = ∑
M
i=1 wi is the sum of all weights. That is, both inverse

CDF sampling and our bidirectional CDF sampling output the same
index j given the same input sample u.

3.1. Taking multiple samples

When doing importance resampling, we often need to generate
multiple samples (N > 1) from a given list of candidates. This is
straightforward to do with inverse CDF sampling, once the CDF has
been computed and stored in memory. Reservoir sampling requires
maintaining N reservoirs, feeding every candidate to each. On the
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other hand, our bidirectional CDF sampling from Alg. 1 can generate
only a single sample in one pass. This is because it traverses the
candidates in an order that depends on the input sample u. The
naive approach of doing N full passes for as many samples can be
inefficient. To offer a better solution, we analyze the variance of
resampling-based multi-sample MC integration.

The variance of the estimator in Eq. (1), taking N samples from
M candidates, is [Tal05]

1
M

Var
(

f
p

)
+

(
1− 1

M

)
1
N

Var
(

f
q

)
. (3)

Recall that such sampling is not efficient to do with Alg. 1 as it would
require N passes over all candidates. We therefore consider a variant
of the estimator which takes one sample out of M/N candidates
and we repeat this process N times to generate N samples. The
total number of candidates is still M/N×N = M. In other words,
we split the set of M candidates into N subsets, take one sample
from each subset, and average the N estimates. The variance of this
alternative estimator is obtained from Eq. (3) by substituting N→ 1
and M→M/N, and dividing the entire expression by N (i.e., the
average over N repetitions). This yields

1
M

Var
(

f
p

)
+

(
1− N

M

)
1
N

Var
(

f
q

)
. (4)

Interestingly, this variance is smaller than the variance (3) of the es-
timator which takes N samples out of the entire set of M candidates.

The above analysis shows that we never need to consider gener-
ating multiple samples from a single candidate set at once: taking
one sample from each of multiple subsets is always better. It also
outlines a simple recipe for taking multiple samples using our al-
gorithm by sweeping over all candidates exactly once. Note that
this recipe is, in fact, a requirement when using Alg. 1. In contrast,
reservoir sampling does not require major changes to generate more
than one sample in a single pass. Nevertheless, our variance analysis
suggests that it too should benefit from candidate splitting.

In Fig. 4 we numerically reproduce the results of the above vari-
ance analysis. We compare two variants of N-sample generation
using our method: with repeated (One set) and split (N subsets) can-
didates. The former produces the same result as multi-sample CDF
sampling. The experiment is thus effectively as a comparison be-
tween inverse CDF sampling (One set) and our proposed single-pass
method (N subsets). The integrand f is zero in part of the domain,
and the target function q mostly follows the integrand except for
a small peak when f is zero. This setting corresponds to having
two light sources where one is occluded and the target importance
function excludes visibility. The candidate density p is uniform.

Using uncorrelated candidates and canonical input samples, sub-
set resampling (solid orange curve in Fig. 4b) yields slightly lower
variance, as the theory predicts. Stratifying candidates and samples
(dashed curves) brings even more improvement, which is larger
when not splitting the candidates. This result does not contradict the
variance analysis which assumes fully independent sampling. Since
repeating the same candidates may not be practical as we discussed
above, we use the splitting approach in our experiments, even if it
yields slightly higher variance.

f (x) q(x) p(x) One set N subsets

0 1x 1 512N

(a) Experiment setup (b) Variance analysis

Figure 4: Variance analysis of 1D importance resampling using
our bidirectional CDF method (Alg. 1). (a) Candidates are gen-
erated with density p and resampled according to q which better
matches the integrand f . (b) Plots of integral-estimation variance
as a function of sample count N, with M = 4N candidates. When the
candidates and input samples are independent, subset-based resam-
pling (solid orange) yields lower variance than always resampling
from the entire candidate set (solid blue), in line with the theory
in Section 3.1. Stratifying the candidates and the input samples
reduces variance further (dashed curves), though slightly less with
subset-based resampling.

4. Ordering candidates on a space-filling curve

Our bidirectional CDF sampling algorithm can produce stratified
indices, but this alone is not sufficient to achieve stratification after
resampling. We need to ensure these indices map to stratified sam-
ples in the integration space. Typical candidate-generation orders,
e.g., random, or the QMC order in Fig. 2b, do not provide a mapping
with such correlation in the two different spaces. To that end, we
propose to order the candidates along a space-filling curve.

Suppose we discretize the n-dimensional unit hybercube into a
uniform grid with resolution 2m along each axis and a total of 2nm

points. We can map a Hilbert curve onto that grid, which provides
a bijective mapping between the index space [1..2nm] and the grid,
allowing us to enumerate the grid points. Importantly, this mapping
has the desirable property that any two points that are nearby along
the curve are also nearby in the hypercube [Sag12]. Steigleder and
McCool [SM03] used this property to map 1D stratified samples
to approximately stratify high-dimensional samples. We use it to
generate stratified resampling candidates

yk = Hilbert
(⌊

k
M

2nm
⌉)

, where Hilbert : [1..2nm]→ [0,1]n (5)

and where ⌊·⌉ denotes rounding to the nearest integer. This analytic
mapping allows enumerating candidates on-the-fly in the order along
the curve. Since the Hilbert curve preserves proximity, stratified
indices j map to stratified candidates y j. We set the grid resolution
to m = 32 to represent 32-bit floating-point coordinates.

We generate candidates directly on the Hilbert curve through
Eq. (5), but this is not the only option. An alternative is to use a strat-
ified hypercube sampling method (e.g., a Sobol sequence) to gener-
ate M = 2nm candidates, one per stratum, and enumerate the strata
along a Hilbert curve. On-the-fly resampling then requires the ability
to compute the sample location inside a given stratum [GRK10].

© 2022 The Author(s)
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5. Stratified resampling algorithm

The discrete sampling algorithm from Section 3 and the candidate
ordering scheme from Section 4 can be combined to achieve efficient
single-pass importance resampling that produces stratified samples.

Given a uniform sample u ∈ [0,1), the resampling step returns an
index j = R(u) by going over the candidates once. The final output
sample is thus x = yR(u) ∈ [0,1)n. Feeding N stratified canonical
samples ui yields N stratified hypercube samples xi. However, as
discussed in Section 3.1, to avoid iterating over all M candidates
for every sample, in practice we split the candidates into N subsets
and resample from each. The splitting is done by interleaving the
indices, i.e., the candidates for sample i ∈ [1..N] are {yi+kN}

M/N−1
k=0 .

In conjunction with the Hilbert-curve ordering, this interleaving ef-
fectively bins the candidates into M/N hypercube strata and puts one
candidate from each into every subset. And since the N input canon-
ical samples are stratified, the resampling selects N well-distributed
strata (one per subset), producing N stratified output samples xi.

Blue-noise error distribution. Apart from stratification, another
way to effectively improve rendering quality is to distribute pixel
error as blue noise over the image. Since our approach is based on
1D sampling, it can be easily combined with the dithering method
of Georgiev and Fajardo [GF16]. Using the same set of N stratified
canonical samples ui for the entire image, the samples for pixel p
are obtained through offsetting: up,i = mod(ui + op/N,1), where
the offset op ∈ [0,1) is taken from a dither mask [GF16].

Note that this sample dithering produces blue-noise error distri-
bution only if there is a chain of correlation between ui, xi, and
f (xi) [HB19]. Our stratified resampling method specifically aims to
maintain high correlation between ui and xi, and we assume xi and
f (xi) are correlated (see discussion in Section 4). In reservoir-based
resampling, the correlation between ui and xi is low, which inhibits
both stratification and blue-noise error distribution.

If the same set of M candidates used for the entire image, aliasing
may occur. To avoid it, we also dither the candidates along the
Hilbert curve across pixels, by applying a fractional offset to the
index k in Eq. (5). We then require a dither mask with two offsets
per pixel [GF16], one for the candidates and one for the samples.

6. Results

We implemented our method and other resampling strategies in the
PBRT renderer [PJH16]. Being agnostic to the rendering process,
our method can be easily integrated into other rendering systems.

We show equal-sample-count comparisons since the overhead of
our method is insignificant. We measure the relative mean squared

error (relMSE): E = ∑
n
i=1

(ei−ri)
2

(r2
i +ε)

, where ri and ei are respectively
the reference and estimated values for the i-th pixel, and ε = 0.001.
We also show “perceptual” relMSE (prelMSE), which is the same
metric but with the images first blurred with a 2D Gaussian ker-
nel of standard deviation 2.1 pixels [CGMS22]. We additionally
include tiled error power spectra to demonstrate that our method can
generate a blue-noise error distribution when dithering is applied,
similarly to Chizhov et al. [CGMS22]. We do not compare against
inverse CDF sampling; while it can also produce stratified samples,

relMSE: 1.718relMSE: 1.718 prelMSE: 2.708prelMSE: 2.708

relMSE: 0.257relMSE: 0.257 prelMSE: 0.336prelMSE: 0.336

relMSE: 1.715relMSE: 1.715 prelMSE: 1.156prelMSE: 1.156

relMSE: 0.127relMSE: 0.127 prelMSE: 0.070prelMSE: 0.070

(a) Reservoir sampling (b) Our method

Figure 5: Importance resampled single scattering in a medium with
N = 1 (top row) and N = 8 (bottom row) samples. Our method yields
lower pixel and perceptual error than reservoir-based resampling,
thanks to its effective sample stratification and blue-noise dithering.
prelMSE values are scaled by 100×.

it requires precomputation, and our goal is to stick to single-pass
resampling.

Single scattering in media. Our first experiment renders single
scattering from a point light in a homogeneous participating medium
with isotropic phase function. This is a 1D integration problem
per pixel where we can readily define 1D ordered candidates. We
use M = 32 stratified dithered candidates, each representing a dis-
tance along a ray, distributed proportionally to transmittance. We
resample them with weight equal to the unoccluded path contri-
bution, a target function similar to existing resampling applica-
tions [TCE05, BWP∗20].

Figure 5 compares our method and weighted reservoir sam-
pling [Cha82] with N = 1 and N = 8 final samples. Both methods
use the same candidate sets and dithered stratified input samples.
The tiled power spectra show that only our method produces a blue-
noise error distribution. Also thanks to the stratification, our method
has lower numerical and perceptual errors.

Direct illumination. We also apply our resampling method to direct
illumination from area emitters, where a candidate on the unit square
maps to an point on an emitter [PJH16]. The first dimension of the
2D candidate is used to choose an emitter. It is then rescaled so that
the candidate can be used to sample the 2D point on the emitter. For
the resampling target function, we again chose the unoccluded path
contribution function. Figure 6 shows results with N = 1 sample
from M = 32 candidates.

We use a 2D Halton sequence to generate candidates which we
dither per pixel via 2D offsetting. We consider reservoir sampling
with a stratified input (Fig. 6a) as a reasonable baseline. This method
cannot produce blue-noise image-error distribution. We also show
two other results where the candidates are reordered along a 2D
Hilbert curve. Note that it is not the exact algorithm we propose
since we actually store all the candidates and sort them afterward.
This is done only to demonstrate the importance of candidate order-
ing. Again, reservoir sampling fails to produce a blue noise error
distribution (Fig. 6b) as its mapping of canonical samples to indices

© 2022 The Author(s)
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(a) Reserv. + QMC order (b) Reserv. + Hilb. order (c) Ours + Hilb. order

prelMSE: 0.0161 prelMSE: 0.0158 prelMSE: 0.0118

Figure 6: Comparison of our bidirectional CDF resampling against
reservoir baselines on area-light illumination with N = 1 sample
from M = 32 Halton-sequence candidates. Dithered reservoir resam-
pling fails to produce a pleasing error distribution, whether using
the candidate generation order (a) or along a Hilbert curve (b). In
contrast, our dithered bidirectional CDF resampling with Hilbert-
curve ordering (c) produces a high-quality blue-noise distribution.

does not preserve locality. In contrast, our technique produces the
desired error distribution from the same inputs (Fig. 6c).

Figure 7 shows another scene where we resample on the fly from
M = 32 candidates coming from an (unsorted) Halton sequence or
our Hilbert-curve distribution (Section 4). We apply dithering to
both the candidates and the resampling (N = 1). Our ordered candi-
date generation and resampling together produce a blue-noise error
distribution (Fig. 7a). However, we are unable to obtain blue noise
if one of these components is missing, i.e., using unordered Halton-
sequence candidates (Fig. 7b) or reservoir sampling (Fig. 7c).

Resampled multiple importance sampling. Since we operate in
primary sample space, to generate M MIS candidates from T tech-
niques we can use the same set of M/T hypercube candidates, each
producing one candidate per technique. This intentional correlation
between the techniques facilitates stratification without adding bias.
To draw N samples, we split the hypercube candidates into N sub-
sets. The effective candidate count per subset is still M/N, as in
non-MIS applications.

(a) Ours + Hilb. cand. (b) Ours + Halton cand. (c) Reserv. + Hilb. cand.

prelMSE: 0.0272 prelMSE: 0.0396 prelMSE: 0.0401

Figure 7: Our candidate generation along a Hilbert curve, com-
bined with our bidirectional CDF resampling, yields blue-noise
error distribution (a). Using unsorted Halton-sequence candidates
(b), or reservoir sampling (c), fails to attain such distribution.

Figure 8 shows rendering of direct illumination for a scene lit
with a complex environment map. We feed Halton-sequence and
Hilbert-curve candidates to reservoir and bidirectional CDF resam-
pling respectively. We combine emitter and BSDF techniques, and
resample from M = 32 candidates (i.e., 16 hypercube candidates).
Thanks to the careful stratification, our method produces lower error.

Higher-dimensional integration. Our method easily scales to
higher dimensions, by using a Hilbert curve of corresponding di-
mension. Figure 9 shows a 3D integration problem of computing
single scattering from multiple area emitters inside a homogeneous
medium. The scene contains difficult visibility as the cage surround-
ing the main object heavily occludes light sources. We compare our
method with 3D Hilbert-curve candidates to reservoir-based resam-
pling of 3D Halton-sequence candidates. Here we do not observe
blue noise even with our method. We believe this is due to the lack
of sufficient correlation between resampling input and output. It still
exhibits lower error with N > 1 samples thanks to their stratification.

Convergence. Figure 10 shows how error plots as functions of
the number of final samples N and candidates M, with M = 8N.
We compare our bidirectional CDF resampling and reservoir sam-
pling with Hilbert-curve candidates to a reservoir baseline with
Halton-sequence candidates, with dithering enabled for all. All three
methods perform resampling in a single pass and have the same
memory complexity. Our method performs best in all cases. Note
that when the dimension of the integration problem increases, sam-
ple stratification becomes less effective and so does our method.

© 2022 The Author(s)
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M = 32, N = 1 M = 32, N = 4

OursOurs
+ Hilbert cand.+ Hilbert cand.

ReservoirReservoir
+ Halton cand.+ Halton cand.

OursOurs
+ Hilbert cand.+ Hilbert cand.

ReservoirReservoir
+ Halton cand.+ Halton cand.

relMSE: 0.956 relMSE: 0.933 relMSE: 0.216 relMSE: 0.255
prelMSE: 1.190 prelMSE: 1.556 prelMSE: 0.288 prelMSE: 0.434

Figure 8: Resampling an MIS mixture of direct-illumination can-
didates. 16 unit-square candidates produce M = 32 hemispheri-
cal candidates via environment-map and BSDF warping. For both
N = 1 and N = 4 samples, our technique produces a blue-noise er-
ror distribution and reduces the overall error over reservoir-based
resampling. prelMSE values are scaled by 100×.

7. Discussion and future work

7.1. Related work

Importance resampling was introduced to computer graphics by
Talbot et al. [TCE05], showing how it can be a powerful and simple
alternative when conventional importance sampling is not feasi-
ble. Recently, ReSTIR [BWP∗20] used cascaded reservoir sam-
pling [ES06] to combine samples across pixels and frames for direct
lighting. That approach has been extended to indirect illumination by
reusing subpaths after the first camera vertex [OLK∗21], similarly
to virtual-point-light approaches. Lin et al. [LWY21] extended the
technique to heterogeneous participating media by using different
transmittance approximations during the different resampling steps.
Orthogonally to these works, Ogaki [Oga21] vectorized reservoir
sampling to better utilize CPU parallelism. Our bidirectional CDF
sampling has similar properties as reservoir sampling since both
methods do not need to store any candidates and avoid precom-
putation. We thus expect that our technique can replace reservoir
sampling in many existing applications when stratification is desired.

Our work enables a combination of resampling and blue-noise

Reservoir Ours
Reservoir + Halton candidatesReservoir + Halton candidates

Ours + Hilbert cand.Ours + Hilbert cand.
relMSE: 0.491 relMSE: 0.423

Figure 9: Single scattering from multiple area lights in a medium.
We compare our bidirectional CDF resampling of Hilbert-curve can-
didates to reservoir resampling of 3D Halton-sequence candidates
(M = 32, N = 8). We include false-color error zoom-ins.

Figure 5 Figure 7 Figure 8

re
lM

SE
pr

el
M

SE

1 512N 1 512N 1 512N

Ours Reservoir + Hilbert Reservoir + Halton

Figure 10: Error plots as functions of the sample count N for
different scenes, with M = 8N candidates. Our technique always
outperforms reservoir sampling variants, achieving a better conver-
gence rate. All of the methods shown are single pass.

error distribution for the first time. To that end, we rely on dithered
sampling [GF16]. Other approaches also exist [AW20, HBO∗19,
BH21], and it would be interesting to investigate their utility. Since
Monte Carlo denoising can benefit from blue-noise error distribu-
tion [HB19], our approach could also enable an efficient application
of denoising to resampling.

7.2. Limitations

While bidirectional CDF resampling achieves stratification in a sin-
gle pass, it requires the ability to traverse the list of candidates from
both ends, inlike reservoir resampling. Even though this requirement
is typically not limiting in rendering applications, some applications
may be incompatible with bidirectional CDF sampling.

Our method stratifies samples in the primary sample space, not
the native integration domain. We assume that the mapping between

© 2022 The Author(s)
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the two preserves the stratification, as in quasi-Monte Carlo litera-
ture [Kel13]. This assumption is empirically known to be violated in
higher dimensions [HB19]. For example, while it is conceivable to
perform stratification over the 8D primary space of four consecutive
direction-sampling decisions along a path, the resulting paths are
unlikely to be stratified. This is not a problem for any method that
operates in primary sample space.

We generate and resample candidates along a Hilbert curve with
resolution 2nm which is the number of points on the n-dimensional
grid it traverses. In our experiments we have m = 32 and n = 1..3,
but always use 32-bit numbers to offset and sample along the curve.
This means that not all grid points might be sampled. At the tested
moderate sample counts N this does not seem to be an issue, though
ideally numbers with precision at least 2nm should be used.

7.3. Future work

Uniform sampling along a Hilbert does not yield very high-quality
stratification in the hypercube. The point sets lack some desirable
properties such as well-stratified lower-dimensional projections. De-
vising a better ordering that achieves such properties is an important
direction for future work.

Recent work has shown that reservoir resampling in combination
with spatio-temporal sample reuse can be a very effective approach
for rendering complex illumination [BWP∗20]. It would be interest-
ing to explore extending our approach to maintain stratification with
spatio-temporal reuse, which our preliminary experiments show is
not straightforward.
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Appendix A: Equivalence of inverse CDF sampling and our
bidirectional CDF sampling

We show that Eq. (2) holds for the output index j. We first prove by
induction that the following condition C is satisfied at any stage of
the algorithm for the front and back indices:

C :
front−1

∑
i=1

wi ≤ u·w <
back

∑
i=1

wi. (6)

For the initial state, front = 1 and back = M, the inequalities hold
trivially since 0≤ u < 1 and thus 0≤ u ·w < w.

Assume that C holds for indices front < back; we need to show
that it still holds after one step of the algorithm. Recall that we keep
track of the running sums wfront = ∑

front
i=1 wi and wback = ∑

M
i=back wi.

The algorithm handles the following two cases.

Case 1: If wfront ≤ u · (wfront +wback), we increment front. We then
need to show that C still holds, i.e., that

(front+1)−1

∑
i=1

wi =
front

∑
i=1

wi ≤ u·w <
back

∑
i=1

wi. (7)

The right inequality u ·w < ∑
back
i=1 wi holds by the inductive hy-

pothesis since back remains unchanged. For the left inequality,
noting that (wfront + wback) ≤ w for any front < back and that
wfront ≤ u · (wfront +wback) (the condition for this first case), we

have

front

∑
i=1

wi = wfront ≤ u ·
(
wfront +wback

)
≤ u ·w. □ (8)

Case 2: If wfront > u ·(wfront +wback), we decrement back. We then
need to show that C still holds, i.e., that

front−1

∑
i=1

wi ≤ u ·w <
back−1

∑
i=1

wi. (9)

The left inequality ∑
front
i=1 wi ≤ u ·w holds by the inductive hypothesis

since front remains unchanged. For the right inequality, using the
condition for this case wfront > u · (wfront +wback), we have

back−1

∑
i=1

wi = wfront +
back−1

∑
i=front+1

wi > u ·
(
wfront +wback

)
+
back−1

∑
i=front+1

wi

> u ·

(
wfront +wback +

back−1

∑
i=front+1

wi

)
= u ·w. □

(10)

Therefore, the condition C holds at any stage of the algorithm. At
the termination point, where the output index is j = front = back,
that condition is identical to Eq. (2), and holds for j just like in
inverse CDF sampling.
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