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“Imagination is more important than knowledge. For knowledge is limited to
all we now know and understand, while imagination embraces the entire world,
and all there ever will be to know and understand.”

– Albert Einstein
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Abstract

Reproducing the interactions between light and matter in a physically accurate way can significantly
improve the realistic appearance of synthetic images, however such effects can be very computationally
expensive to simulate. Pressed by strict requirements on image quality and visual realism, industrial
applications have recently moved away from using legacy rasterization-based rendering solutions to
fully embrace physically-based Monte Carlo methods. is dramatic shi has rekindled the interest
in developing new and robust light transport simulation algorithms that can efficiently handle a wide
range of scenes with complex materials and lighting – a problem that we address in this thesis.

State-of-the-artMonte Carlomethods solve the global illumination problem by sampling random light
transport paths in the scene via ray tracing. We analyze the efficiency of these methods, devise new
path sampling techniques for rendering surface and volumetric light scattering, and develop novel
means of leveraging illumination coherence via path reuse. is results in several practical rendering
algorithms that produce images with less noise and remain more resilient to variations in the scene
configuration than existing methods. e improved efficiency of these algorithms comes from the use
of new and diverse sampling techniques, each specialized for handling a different set of lighting effects.
eir robustness is due to the adaptive combination of these techniques in a way that preserves their
individual strengths.
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Kurzfassung

Die physikalisch korrekte Simulation der Interaktion von Licht mit Materie kann den realistischen
Eindruck von synthetisch generierten Bildern zwar deutlich verbessern, erfordert allerdings einen
sehr hohen Berechnungsaufwand. Trotzdem hat die Industrie aufgrund der hohen Anforderungen an
Bildqualität und Realismus die bisherigen approximativen Verfahren aufgegeben und ist vollständig
auf die neuen physikalisch-basierte Monte-Carlo-Verfahren umgestiegen. Dieser dramatische Um-
bruch hat aber zu einem großen Interesse an neuen und robusten Algorithmen geführt, die auch
Szenen mit komplexen Materialien und Beleuchtungssituationen effizient berechnen können. Genau
solche Algorithmen sind das ema dieser Dissertation.

ModerneMonte-Carlo-Verfahren simulieren die Beleuchtung in einer Szene, indemsiemöglicheTrans-
portpfade von Licht statistisch auf Basis von Ray-Tracing ermitteln. Wir analysieren die statistische
Effizienz dieserMethoden, schlagen neue Sampling-Techniken für Oberflächen undVolumen vor und
entwickeln neueMethoden, um die Kohärenz in der Beleuchtung besser ausnutzen zu können. Daraus
entstehen verschiedene praktische Algorithmen zur Bildsynthese, die weniger Rauschen zeigen und
weniger anfällig für Änderungen in der Szene sind als bisherige Ansätze. Die verbesserte Effizienz der
neuen Algorithmen wird durch eine geschickte Kombination neuer Sampling-Techniken erzielt, die
jeweils auf bestimmte Beleuchtungssituationen spezialisiert sind. Eine adaptive Kombination dieser
Techniken, die deren jeweiligen Stärken erhält, führt dann zu der notwendigen Robustheit der Ansätze.
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Introduction 1
Sight is arguably the most important sense that allows humans to interact with the outside world. It
has been estimated that over eighty percent of our perception, cognition, and activities are mediated
through vision. Unsurprisingly, the human effort to understand the nature of light and to capture and
recreate images of the surrounding environment has a long history.

Over two thousand years ago, the Greeks believed that it is the eyes that emanate light rays toward
the objects being perceived. Even under this false assumption, Euclid correctly postulated that light
traveled along straight lines and described the laws of reflection. Many other properties of light have
been discovered since then, and modern physics has confirmed that light is, in fact, transmitted by
photons from light sources to the visible objects. Scattered by these objects, the photons reach our
eyes where minuscule photoreceptors record their energy before our brain finally creates an image.

Until two hundred years ago, the only way to obtain a persistent picture of a physical scene was through
hand drawing. Medieval paintings depicted objects and creatures using simplistic forms whose dispro-
portionate sizes and shapes signified their importance or relative positions. efirstmajor steps toward
realistic rendering were taken by Renaissance artists like da Vinci and Dürer who studied proportions
and perspective. It was soon thereaer recognized that attention to shading aspects like shadows and
light reflections is required to produce plausible renderings of real objects. By the early nineteenth cen-
tury, realistic painting was aided by optical devices like the camera lucida (Latin for “light room”) and
camera obscura (“dark room”, a.k.a. pinhole camera), which created a superimposition of the scene
onto a drawing surface which could then be manually traced by the artist. e photographic camera
subsequently replaced the drawing surface in the camera obscura with a light-sensitive plate, making
the process of capturing persistent images of physical scenes fully automatic. Modern cameras sport
arrays of electronic light sensors that digitize the captured images. Since the invention of photography,
drawing and painting evolved into modern, not necessarily photorealistic art, but remained the only
way to create images of virtual (i.e. non-existent) environments until only a few decades ago.

e advent of programmable computers in the second half of the twentieth century gave birth to the
field computer graphics. Early rendering algorithms produced line drawings of three-dimensional
polygonal models. is approach was superseded by raster graphics which enabled shading objects
initially by attributing a single color per polygon and later by computing simple local lighting for each
image pixel. e 1980s saw two major breakthroughs toward photorealistic rendering. e first was
the introduction of the ray tracing method by Whitted [158], who demonstrated accurate reflections,
refractions, and direct illumination with shadows from point (i.e. infinitesimally small) light sources.
Whitted’s algorithm was simple and elegant but could not reproduce many commonly seen effects in
photographs, such asmotion blur, so shadows, or any kind of indirect (i.e. bounced) illumination. e
second breakthrough came a few years later with the development of stochastic ray tracing [17] and
the subsequent rigorous mathematical formalization of light transport as an integration problem [66].
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ese developments enabled the accurate computation of the full global illumination in a scene, which
in turn made rendering all the aforementioned effects possible, albeit with varying efficiency.

Propelled by rapid technological advancements, computer graphics became mainstream in the 1990s.
Computer games immersed players in complex interactive 3D worlds, and the first full-length com-
puter animation films came out. Due to the significant computational cost of ray tracing at the time,
those applications had to rely onmore hardware-friendly rasterization-based renderingmethods. ese
methods could reproduce only a limited set of effects efficiently, and more complex light interactions
were being approximated using ad-hocmodels. Physically-based rendering remainedmostly confined
to academic research. Over the years, the pervasive use of computer-generated imagery nourished
a growing demand for visual realism that became increasingly difficult to satisfy with rasterization-
based methods. Meanwhile, research had made significant progress in light transport theory and new
methods for rendering a wide range of surface and volumetric lighting effects had been developed.
About a decade ago, stochastic ray tracing finally became a viable alternative and in the past few years
has almost completely replaced legacy rendering technology in all but real-time graphics applications.
Physically-based rendering is now widely adopted in visual arts, industrial design, the media and en-
tertainment industries, which have all mastered the production of synthetic images that are virtually
indistinguishable from real photographs, although oen at a substantial computational cost.

Rendering a photorealistic image of a virtual scene on a computer requires a simulation of the global
light transport in the scene, all the way from the light sources, through scattering events at objects’ sur-
faces and in participating media, to the eye of the virtual observer. e physical laws that must govern
this simulation have been studied for centuries, and the rendering problem is by now theoretically well
understood. e value of every image pixel can be mathematically expressed as the sum of the differ-
ential energy contributions of all possible photon trajectories in the scene that start on a light source
and end in the observer’s eye. e challenge of computing these pixel integrals efficiently lies in the
fact that in most typical scenes only a very small fraction of all emitted photons eventually make their
way to the eye. e goal of a global illumination algorithm is thus to find that small set of relevant
light transport paths that make actual energy contributions to the image. State-of-the-art methods
are based on Monte Carlo integration and compute an estimate for every pixel by sampling a number
of random paths in the scene via ray tracing. is approach has the advantage of being conceptually
simple and able to reproduce all possible lighting effects. However, random sampling leads to noise in
the rendered image. Reducing the amount of noise to an acceptable level can typically be achieved by
simply increasing the number of sampled paths, but this comes at the cost of a corresponding linear
increase in computation time. Developing methods that can more efficiently find relevant paths is an
important problem that has been an active area or research in the past three decades.

e variousMonte Carlo renderingmethods available today differ primarily in the procedures they use
to construct light transport paths, called path sampling techniques. e performance of such a method
in different scene configurations is largely determined by the efficiency of the sampling techniques it
employs. Intuitively, the efficiency measures the number of relevant paths a technique can find per
unit of time. Two general approaches exist for improving this efficiency. One aims to accelerate path
generation, typically by reusing (parts of) a sampled path to cheaply construct other similar paths,
thereby amortizing the sampling computational effort. Path reuse makes many-light [18] and photon
density estimation [63] methods efficient in capturing diffuse indirect and caustic illumination respec-
tively. Alternatively, knowledge about the scene can be used to guide the sampling toward important
regions and increase the chance of finding relevant paths, thereby concentrating the computational
effort where it is likely to pay off most. By virtue of importance sampling, the path tracing algorithm
excels at reproducing sharp reflections and direct illumination [127]. Unfortunately, is it very diffi-
cult – and likely impossible – to design a single technique that can efficiently sample all possible light
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transport effects, and therefore none of the aforementioned methods is robust to all kinds of scene
configurations. As a result, some effects oen remain noisy in the rendered image or require expen-
sive additional sampling to be accurately reproduced using the methods’ limited arsenals of sampling
techniques.

e problem of handling scenes with complex lighting can be attacked by employing a larger set of
path sampling techniques, each tailored to a specific effect. e key to robustness with this approach
is to combine the contributions of the different techniques in a way that preserves the qualities of each.
e bidirectional path tracing algorithm achieves this by adaptively weighting these contributions us-
ing multiple importance sampling [142]. is intelligent combination makes the algorithm one of the
most versatile rendering methods available. However, bidirectional path tracing is also notoriously
inefficient on scenes where light interacts multiple times between specular and non-specular surfaces,
because none of its many sampling techniques can find these paths with a sufficiently high probability.
e problem of finding relevant light transport paths becomes evenmore difficult in scenes with partic-
ipating media, where the space of all possible paths is comparatively much larger. Existing volumetric
path sampling techniques, which are adaptations from surface-based rendering, can be particularly
inefficient in anisotropically scattering media. Handling a wide range of input scene configurations
remains an open problem, and devising efficient path sampling techniques is especially challenging
for multi-bounce focused illumination effects which cover a small fraction of the entire path space.

e goal of the work presented in this thesis is to develop efficient path sampling techniques for light
transport simulation in scenes containing surfaces and participating media. To this end, we start by
casting a number of existing methods into the path integral framework and analyze the efficiency of
their corresponding path sampling techniques. To address their weaknesses, we devise new techniques
for rendering surface and volumetric light scattering and develop novel schemes for combining im-
portance sampling and path reuse. We augment several rendering algorithms with our techniques to
improve their efficiency on scenes with complex lighting and produce images with less noise. We also
improve the robustness of these algorithms by adaptively combining these diverse techniques, each
specialized in handling a different set of light transport effects, via multiple importance sampling.

1.1 Summary of original contributions

ework presented in this thesis builds upon a number of prior works. Below we highlight our major
contributions and results.
• Importance-driven distribution of virtual point lights. Many-light methods decompose

path sampling into a virtual point light (VPL) distribution stage and a subsequent rendering
stage that computes the contributions of all VPLs to the surfaces seen from the eye. Our first
contribution is an importance-driven VPL sampling algorithm which produces a VPL distribu-
tion relevant for the chosen viewpoint, such that every VPL brings roughly the same amount of
energy to the image. We achieve this by probabilistically accepting or rejecting VPL candidates
based on an on-the-fly estimation of their image contribution. Our method can efficiently find
good VPL sets in scenes with difficult visibility configurations, sometimes resulting in rendering
speed-ups of over an order of magnitude compared to traditional VPL sampling.

• Importance caching for many-light rendering. Our second contribution is a method that
aims to improve the efficiency of rendering a large number of VPLs by exploiting the illumina-
tion coherence in the scene. e idea is to cache the exact contributions of all VPLs at a sparse set
of locations in the scene and then reuse these evaluations in the form of importance to probabilis-
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tically select the few most relevant VPLs at other nearby locations. Several importance distribu-
tions built at each cache location ensure that sampling remains robust around illumination dis-
continuities. We combine the many cached distributions gathered around every query location
using a novel multiple importance sampling heuristic. e resulting importance caching algo-
rithm can deliver significant noise reduction in scenes with complex occluded illumination. Un-
like most other caching-based methods, our approach does not introduce additional bias, which
allows it to produce high-quality results progressively with a bounded memory footprint.

• Vertex connection andmerging. Our third contribution is based on a novel interpretation of
photon density estimation as a Monte Carlo path sampling technique. is reformulation makes
it possible, for the first time, to explain in a formal manner the relative efficiency of photon map-
ping and bidirectional path tracing – two algorithms that have so far been considered concep-
tually incompatible solutions to the light transport problem. More importantly, it allows us to
employ multiple importance sampling to seamlessly integrate these methods into a more robust,
unified practical rendering algorithm, which we call vertex connection and merging. We devise
a progressive version of this algorithm that is consistent and efficiently handles a wide variety
of lighting conditions, ranging from direct illumination, diffuse and glossy inter-reflections, to
specular-diffuse-specular light transport. We show that this algorithm inherits the high asymp-
totic performance of bidirectional path tracing for most light path types, while benefiting from
the efficiency of photon mapping for complex specular lighting effects.

• Joint path sampling in participating media. Our final contribution begins with an efficiency
analysis of path sampling in participating media showing that traditional incremental vertex-by-
vertex path construction can lead to high variance and slow error convergence. We then address
this problem by devising joint importance sampling of path vertices in participating media. is
leads to a set of new sampling routines to explicitly construct single- and double-scattering in
anisotropically-scattering media. We demonstrate the benefit of our techniques by integrating
them into various rendering algorithms, which brings a variance reduction of up to three orders
of magnitude compared to prior methods.

1.2 Thesis outline

is thesis is organized into ten chapters. In Chapter 2we review some relevant theoretical background
in Monte Carlo integration, specifically integral estimators, error measures and variance reduction
techniques, and set the basic mathematical notation that we will use throughout the remainder of the
thesis. Chapter 3 introduces the physical laws of light propagation and scattering on surfaces and
in participating media. We present the path integral formulation of light transport which will later
serve as the theoretical basis of our contributions. In Chapter 4 we describe how Monte Carlo can be
used to estimate the path integral and analyze the efficiency of existing path sampling techniques. In
Chapter 5 we formulate our importance-driven virtual point light (VPL) distribution method, which
we then complement in Chapter 6 with our importance caching scheme to improve the efficiency of
rendering thousands of VPLs. Chapter 7 presents our reformulation of photonmapping as a path sam-
pling technique and its combination with bidirectional path tracing into our unified vertex connection
and merging (VCM) algorithm. Chapter 8 then discusses some important aspects of the practical im-
plementation of the VCM algorithm. We finally focus on volumetric rendering in Chapter 9, where we
analyze the shortcomings of existing volumetric path construction schemes and devise our new joint
path importance sampling techniques. In Chapter 10 we summarize the contributions of this thesis
and discuss some related follow-up work as well as possible avenues for future developments.
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Photorealistic image synthesis requires the physically-based simulation of light transport in a virtual
three-dimensional environment. As we will see later in Chapter 3, this light transport problem can
be formulated as an integration problem that is conceptually simple but difficult to solve in practice.
e function to be integrated is defined on a high-dimensional space and has a complex shape that
contains discontinuities and singularities. Since the behavior of this function depends on the input
scene, analytic integration is generally infeasible and one has to resort to numerical integration instead.
Unfortunately, the high dimensionality of the integral makes standard deterministic integration rules
impractical, as their computational cost grows exponentially with the dimension. e best-known
method for computing high-dimensional integrals is Monte Carlo integration, which is based on ran-
dom sampling. Monte Carlo integration can handle almost any function, does not suffer from the curse
of dimensionality, and is the basis of all state-of-the-art global illumination rendering algorithms.

In this chapter we give a brief introduction toMonteCarlo integration and basic concepts in probability
theory. We define the terminology that we will be using in the following chapters and summarize
some variance reduction techniques that have proved useful in computer graphics. We only focus on
definitions and methods relevant to the contributions of this thesis and refer the interested reader to
classic Monte Carlo literature for a more comprehensive introduction to the topic [44, 129, 69].

2.1 Random variables

In probability and statistics, a random variable is a variable whose possible values are numerical out-
comes of a random phenomenon. ere are two types of random variables: discrete and continuous.
Unlike other mathematical variables, each possible value of a random variable has an associated prob-
ability (if discrete) or a probability density (if continuous).

2.1.1 Discrete random variables

A discrete random variable X can take a finite number M of possible values. Each possible outcome x′i,
for i = 1, . . . ,M, has an associated probability p(x′i)∈ [0;1], where p(x) is the probability mass function
associated with the random variable X . e cumulative distribution function (CDF),

P(x) = Pr{X ≤ x}= ∑
x′≤x

p(x′), (2.1)



6 Section 2.1: Random variables

gives the probability of X taking any value smaller than or equal to x. e corresponding notions for
a discrete random multidimensional vector X = (X1, . . . ,Xk) are the joint probability mass function
p(x1, . . . ,xk) and the joint CDF

P(x1, . . . ,xk) = Pr{Xi ≤ xi for all i = 1, . . . ,k}
= ∑

x′1≤x1

. . . ∑
x′k≤xk

p(x′1, . . . ,x
′
k).

(2.2a)
(2.2b)

2.1.2 Continuous random variables

A real-valued, i.e. continuous, random variable X defined on the real line R is characterized by its
probability density function, or pdf. e pdf p(x) is defined such that the probability that the variable
takes a value x′ in the infinitesimally small interval [x,x+dx] is p(x)dx. e corresponding cumulative
distribution function (CDF) provides a slightly more intuitive notion:

P(x) = Pr{X ≤ x}=
x∫

−∞

p(x′)dx′. (2.3)

e pdf gives a relative probability that X takes a value in the (infinitesimally small) neighborhood of x,
whereas the CDF gives the absolute probability that X takes any value smaller than or equal to x. From
Equation 2.3 it follows that, for any two constants a < b,

Pr{a≤ X ≤ b}=
b∫

a

p(x′)dx′. (2.4)

e corresponding notions for a randommultidimensional vector X = (X1, . . . ,Xk) defined on Rk are
the joint pdf p(x1, . . . ,xk) and the joint CDF

P(x1, . . . ,xk) = Pr{Xi ≤ xi for all i = 1, . . . ,k}

=

x1∫
−∞

. . .

xk∫
−∞

p(x′1, . . . ,x
′
k)dx′1 . . . dx′k,

(2.5a)

(2.5b)

from which it follows that

Pr{ai ≤ Xi ≤ bi for all i = 1, . . . ,k}=
b1∫

a1

. . .

bk∫
ak

p(x′1, . . . ,x
′
k)dx′1 . . . dx′k. (2.6)

More generally, for a random variable X with pdf p(x) defined on an arbitrary domain Ω withmeasure
function µ(x), its probability measure, or probability distribution, is defined as

P(D) = Pr{X ∈ D}=
∫
D

p(x)dµ(x) (2.7)

for any measurable set D⊆Ω. e probability measure satisfies P(Ω) = 1.
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2.1.3 Expected value

e expected value, ormean, of a discrete random variable Y = f (X) is defined as

E[Y ] =
M

∑
i=1

f (x′i)p(x′i). (2.8)

e corresponding definition for a continuous random variable Y = f (X) ∈Ω is

E[Y ] =
∫
Ω

f (x)p(x)dµ(x). (2.9)

From the above definitions it follows that, for any constant c,

E[cY ] = cE[Y ], (2.10)

and also, for a set of random variables Y1, . . . ,Yk,

E

[
c

k

∑
i=1

Yi

]
= c

k

∑
i=1

E[Yi]. (2.11)

2.1.4 Variance and standard deviation

An important characteristic of a random variable is its variance, which measures the deviation of the
outcomes from the expected value. e variance is defined as the second centralmoment of the variable
about its mean:

Var[X ] = E
[
(X−E[X ])2]

=
∫
Ω

(
x2−2xE[X ]+E[X ]2

)
p(x)dx

= E[X2]−2E[X ]2 +E[X ]2 = E[X2]−E[X ]2.

(2.12a)

(2.12b)

(2.12c)

e above result also holds for discrete random variables, and the derivation is analogous. From the
definition of variance it follows that, for any constant c,

Var[cX ] = c2Var[X ]. (2.13)

e standard deviation is the square root of the variance:

σ[X ] =
√

Var[X ]. (2.14)

Note that the unit of the standard deviation are the same as the unit of the random variable itself, while
for the variance it is the square of the variable’s unit.
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2.2 Integral estimators

Let us now consider the following definite integral over some domain Ω:

I =
∫
Ω

f (x)dµ(x). (2.15)

e idea ofMonteCarlo integration is to approximate this integral by defining a randomvariablewhose
expected value is the value of the integral. We define

Î1(X) =
f (X)

p(X)
, (2.16)

where the subscript signifies that Î1 is a function of one random variable X defined on Ω with pdf p(x).
Î1 itself is a random variable and its expected value is

E
[
Î1(X)

]
= E

[
f (X)

p(X)

]
=

∫
Ω

f (x)
p(x)

p(x)dµ(x) =
∫
Ω

f (x)dµ(x) = I. (2.17)

Î1 is called a primary estimator for I. e above equation holds under the following two conditions:
• p(x) = 0 only if f (x) = 0. is ensures that all non-zero values of f are sampled with non-zero

probability.
• Whenever p(x) = 0, then Î1(X) must be defined as zero (to avoid a division by zero in Equa-

tion 2.16).

A secondary estimator for I is defined as

ÎN(X1, . . . ,XN) =
1
N

N

∑
i=1

Î1(Xi) =
1
N

N

∑
i=1

f (Xi)

p(Xi)
, (2.18)

which computes the average of the primary estimators constructed fromN independent and identically
distributed random variables X1, . . . ,XN . e expected value of the secondary estimator ÎN is also I:

E
[
ÎN(X1, . . . ,XN)

]
= E

[
1
N

N

∑
i=1

Î1(Xi)

]
=

1
N

N

∑
i=1

E
[
Î1(Xi)

]
=

1
N

N

∑
i=1

I = I. (2.19)

Secondary estimators of the form in Equation 2.18 can be evaluated progressively starting from a single
primary estimate and incrementally accumulating new estimates into a running average. is scheme
is based on a recursive formulation of the secondary estimator:

ÎN(X1, . . . ,XN)︸ ︷︷ ︸
new cumulative estimate

=
1
N

N

∑
i=1

Î1(Xi) =
N−1

N
ÎN−1(X1, . . . ,XN−1)︸ ︷︷ ︸
old cumulative estimate

+
1
N

Î1(XN)︸ ︷︷ ︸
new estimate

. (2.20)

As we will see in the following section, the approximation error of a secondary estimator is inversely
proportional to the square root of the number of samples, i.e. primary estimates, it uses. e above
recursive formulation allows us to increase the accuracy of a given estimate by progressively accumu-
lating new samples.

Note the simplicity and generality of the Monte Carlo method, which requires only two basic oper-
ations to produce an estimate of an integral: (1) a procedure for sampling points in the integration
domain Ω and (2) point-wise evaluation of the integrand f (x) and the pdf p(x). Another important
property is that its computational complexity of this method does not directly depend on the dimen-
sionality of the integral.
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2.3 Estimator error and convergence rate

It is important to understand that when usingMonte Carlo integration, any actual estimate obtained by
taking a random instance of an estimator only approximates the sought “true” integral value, even if its
expectation is equal to that true value. In practice it is also useful to employ estimators whose expected
values do not exactly equal the true value, especially when these estimators are cheaper to evaluate (a
notable example is the photon mapping light transport estimator, which we will discuss in Chapters 4
and 7). It is therefore important to quantify and study the error of Monte Carlo estimators, which can
provide insights into how to improve their accuracy and consequently obtain better approximations.

2.3.1 Error

e error of an integral estimate, i.e. a random instance of an estimator, is the difference between the
value of the estimate Î and the true value I:

Error
[
Î
]
= Î− I. (2.21)

Since the estimator is a random variable, its error is also a random variable whose behavior can be
analyzed using common statistical tools, as we describe below.

2.3.2 Bias

e bias of a Monte Carlo estimator Î is the expected value of its error, which is also equal to the
difference between the expected value and the true value I:

Bias
[
Î
]
= E

[
Î− I

]
= E

[
Î
]
− I. (2.22)

An estimator whose expected value equals I has zero bias and is thus called unbiased, in contrast to
biased estimators which have non-zero bias. e biased primary estimators used in rendering typi-
cally have the same form as the one in Equation 2.16, but evaluate a different function g(x) which
approximates f (x).

2.3.3 Mean squared error

emean squared error (MSE) of an estimator measures its average squared error:

MSE
[
Î
]
= E

[
(Î− I)2]

= E
[
Î2]−2E

[
Î
]

I + I2

= (E
[
Î2]−E

[
Î
]2
)+(E

[
Î
]2−2E

[
Î
]

I + I2)

= Var
[
Î
]
+Bias

[
Î
]2
.

(2.23a)
(2.23b)

(2.23c)

(2.23d)

eMSE is the secondmoment of the estimator about the true value and incorporates both the variance
of the estimator and its bias. e unit of measurement is the square of the unit of the quantity being
estimated.
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e root mean squared error (RMSE) of an estimator is the square root of its MSE:

RMSE
[
Î
]
=
√

MSE
[
Î
]
=

√
Var
[
Î
]
+Bias

[
Î
]2
. (2.24)

e RMSE has the same unit as the quantity being estimated. e smaller the RMSE of an estimator is,
the higher is the confidence that a random instance of this estimator closely approximates the desired
quantity.

From Equation 2.23 it follows that for unbiased estimators the MSE is equal to the variance, which for
a secondary estimator ÎN (Eq. 2.18) is

MSE
[
ÎN
]
= Var

[
ÎN
]
= Var

[
1
N

N

∑
i=1

Î1(Xi)

]
=

1
N2

N

∑
i=1

Var
[
Î1(Xi)

]
=

1
N
Var
[
Î1(X1)

]
, (2.25)

provided that the variance of the primary estimator Î1 is finite. Also, for unbiased secondary estimators
the RMSE is equal to the standard deviation:

RMSE
[
ÎN
]
= σ

[
ÎN
]
=

1√
N

σ
[
Î1(X1)

]
. (2.26)

Knowing the standard deviation of a secondary estimator, we can obtain probabilistic bounds on the
deviation of a random instance from themean using the central limit theorem. is theorem states that
the distribution of the values of ÎN converges to a normal distribution as N approaches infinity:

lim
N→∞

Pr
{

ÎN−E
[
ÎN
]
≤ t σ

[
ÎN
]}

=
1√
2π

t∫
−∞

e−x2/2 dx. (2.27)

is means that, for a large enough N, the probability that a random unbiased integral estimate ÎN will
differ from the true value by more than three standard deviations is only about 0.3%.

2.3.4 Efficiency

By increasing the number of samples in a secondary estimator we can reduce its variance and thus its
error. Doing so, however, linearly increases the computational cost of evaluating the estimator. Ideally,
we would like to construct estimators whose error and computational cost are both small. is trade-
off is described by the efficiency of a Monte Carlo estimator:

ε
[
Î
]
=

1
MSE

[
Î
]
Time

[
Î
] , (2.28)

where Time
[
Î
]
is the time required to obtain a random instance of Î. e lower the MSE obtained in

a given fixed running time is, the more efficient the estimator is.

2.3.5 Consistency and convergence rates

A secondary Monte Carlo estimator is called consistent if the estimate converges almost surely to the
correct solution as the number of samples approaches infinity:

lim
N→∞

Pr
{

ÎN− I = 0
}
= 1. (2.29)
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Consistency is a very important property for practical applications as it ensures that the accuracy of
a secondary Monte Carlo estimate can be improved arbitrarily by simply accumulating more random
samples.

For unbiased secondary estimators of the form in Equation 2.18, whose expectation is equal to the
correct solution, consistency is guaranteed by the strong law of large numbers, which states that the
sample mean almost surely converges to the true mean as N→∞. In addition, from Equation 2.26 it
follows that the error convergence rate of such estimators isO(N−1/2). ismeans that in order to reduce
the error by half, we need to quadruple the number of random samples, provided that the variance of
the primary estimator is finite. e law of large numbers still holds when that variance is infinite, but
the convergence rate is lower in this case. We will discuss some examples in Chapter 9.

A secondary estimator constructed from a biased primary estimator is generally inconsistent, since it
only converge to the expected value of the primary estimatorwith an infinite number of samples. Itmay
therefore seem logical to always prefer unbiased estimators. However, the use of carefully constructed
biased estimators can be very beneficial in practice, as they can be more efficient, i.e. yield estimates
with lower error at the same computational cost as an unbiased estimator. In rendering, this efficiency
is oen achieved by reusing samples for the estimation of multiple integrals (each corresponding to
the value of one image pixel), motivated by the observation that neighboring pixels oen have highly
correlated integrals. Amortizing the sampling effort over many pixels can thus deliver cheap variance
reduction, albeit at the cost of introducing systematic error (bias). As we will discuss in Chapters 4
and 7, some biased estimators can be made consistent by ensuring that, as the number of samples
increases, both their variance vanishes and their expected value approaches the true value.

2.4 Sampling random variables

In order to obtain an actual estimate from a Monte Carlo integral estimator, we need to devise a sam-
pling procedure, or sampling technique, for generating random points inside the integration domain.
Having sampled an instance y of a random variable Y , we can use it to evaluate the estimator and ob-
tain an integral estimate. In this section we review some techniques for sampling random variables
according to a given probability density function.

2.4.1 Transforming between distributions

Sampling techniques usually operate by taking an input a random variable X defined on some domain
with some distribution and transforming it to the domain of Y using a transformation function T :

Y = T (X), (2.30)

where T must be a bijection, i.e. a one-to-one mapping from the domain of X to the domain ofY . As a
direct consequence of this property, T must be strictly monotone (otherwise different X values would
map to the sameY value). us, the derivative of T is either strictly positive or strictly negative, which
implies the following relationship between the CDFs of X and Y :

PY (y) = PY (T (x)) = PX(x). (2.31)
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Differentiating the above equation with respect to y gives the pdf relationship1

p(y) =
p(x)
|JT |

, (2.32)

where |JT | is absolute value of the determinant of T ’s Jacobian matrix. For the case where X and Y are
one-dimensional (i.e. scalar) variables, we have |JT |=

∣∣∣ dy
dx

∣∣∣.
2.4.2 CDF inversion method

We will usually want to prescribe the distribution p(y) explicitly. erefore, knowing the pdf of the
input variable X , we need to derive a transformation T that will yield the desired distribution for Y .
is follows directly from Equation 2.31:

y = T (x) = P−1
Y (PX(x)), (2.33)

where P−1
Y is the inverse CDF of Y . In a practical implementation, the input variable is most oen a

“canonical” uniform random number ξ in the interval [0;1] produced by a (pseudo-)random number
generator [35]. In this case the above equation simplifies to

y = P−1
Y (ξ), (2.34)

since the CDF of the canonical input variable ξ is simply its value.

2.4.3 Multivariate distributions

To sample from a given joint distribution with pdf p(y1, . . . ,yk), we can use the relationship

p(y1, . . . ,yk) = p(y1, . . . ,yk−1)p(yk|y1, . . . ,yk−1), (2.35)

where p(y1, . . . ,yk−1) is themarginal joint pdf of y1, . . . ,yk−1 and p(yk|y1, . . . ,yk−1) is the conditional
pdf of yk given y1, . . . ,yk−1. e marginal pdf is obtained by integrating out yk from the full joint pdf:

p(y1, . . . ,yk−1) =
∫
Ω

p(y1, . . . ,yk)dyk. (2.36)

We can recursively expand the relationship in Equation 2.35 to obtain a product, i.e. a chain, of uni-
variate marginal and conditional pdfs:

p(y1, . . . ,yk) = p(y1)p(y2|y1) . . . p(yk|y1, . . . ,yk−1). (2.37)

e expressions for the conditional pdfs above can be efficiently obtained via successive marginaliza-
tion, using a relationship that follows from Equations 2.35 and 2.36:

p(yi|y1, . . . ,yi−1) =
p(y1, . . . ,yi)

p(y1, . . . ,yi−1)
=

p(y1, . . . ,yi)∫
Ω p(y1, . . . ,yi)dyi

, (2.38)

1Strictly speaking, instead of p(x) and p(y) we should write pX (x) and pY (y) to denote that X and Y have different pdfs.
We will omit such subscripts when ambiguities can be resolved by the names of the arguments.
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starting from i = k and reusing the result of
∫

Ω p(y1, . . . ,yi)dyi in the nominator of the expression for
p(yi−1| . . .). Once we have obtained the expressions for all univariate pdfs in the chain, we can derive
their corresponding canonical transformations by inverting their CDFs (Eq. 2.34). Using these trans-
formations we can generate a random vector y = (y1, . . . ,yk) with density p(y1, . . . ,yk) by successively
drawing independent canonical random numbers ξi and computing the individual scalar variables yi.

Equation 2.37 represents one factorization of the given joint pdf into a chain of marginal and condi-
tional univariate pdfs. Each possible factorization corresponds to a different order of sampling the
scalar variables yi. A common application in graphics is sampling a point on a 2D domain from a
joint density p(x,y) defined by an image or a procedural texture [109, page 724]. is joint pdf can be
factorized in two ways:

p(x,y) = p(x)p(y|x) = p(y)p(x|y). (2.39)

For the case of sampling a pixel in a discrete image, the two possible factorizations correspond to either
first choosing the column x from a marginal distribution over all rows and then choosing the row y
from a distribution conditioned on the column x, or vice versa.

2.4.4 Global vs. local sampling

We will refer to the above method for generating a random multi-dimensional vector y from a pre-
scribed joint distribution as global sampling, as it requires strict coordination between the sampling
decisions for all scalar variables yi. It is also possible to generate a random vector by choosing the con-
ditional distribution for each yi directly. is local sampling approach is generally much simpler than
global sampling, as it does not require marginalization. It is also practical, as it provides freedom to
choose any pdf for each subsequent yi, usually conditioning it only on the (few) previously sampled
variable(s). In fact, as we will discuss later in Section 4.2, this is the standard way to sample paths for
estimating the light transport integral (Eq. 3.27). However, a significant disadvantage of local sam-
pling is that it does not provide means to directly control the shape of the final joint distribution of
the generated vector, which can result in a high-variance integral estimator. In Chapter 9, we will use
global sampling to construct light transport paths in participating media and obtain an efficiency gain
of up to several orders of magnitude over local sampling.

2.4.5 Other methods

eCDF inversion method from Section 2.4.2 is generally the most efficient approach to sample from
a given pdf. However, it requires the derivation of an analytic expression for the inverse of the CDF,
which is possible only for relatively simple pdfs. Below we review some alternative, albeit less efficient,
sampling methods that only require point-wise evaluation of the target pdf.

Arguably the simplest method to sample from a given pdf p(x) is rejection sampling. is method uses
an “envelope” distributionwith pdf q(x) that can be easily sampled from (e.g. the uniform distribution),
and also requires finding a constant c such that p(x)≤ cq(x), ∀x∈Ω, i.e. such that cq(x) envelops p(x).
First, two random samples are drawn: a tentative sample xi with pdf q(xi) and a uniform random
number ξ ∈ [0;1). en xi is accepted as a realization of the target distribution p(x) if ξ≤ p(xi)

cq(xi)
. is

method is very general, but its efficiency crucially depends on the choice of q(x) and c – if cq(x) is not
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a tight bound on p(x) then many tentative samples will be rejected before a valid realization of p(x) is
drawn.

A popular and sophisticated variant of rejection sampling is Metropolis sampling [92], which belongs
to the class of Markov chain Monte Carlo methods. is method aims to distribute samples from an
unknown target pdf p(x) proportional to a given non-negative function f (x). e method produces a
sequence, or a chain, of samples {Xi}N

i=0, where the first one, X0, is chosen arbitrarily. To generate Xi, a
randommutation is performed on the previous sample Xi−1, yielding a new tentative sample X ′i . en
Xi is set to either Xi−1 or X ′i , based on a carefully chosen probability which is a function of f (Xi−1),
f (X ′i ), and the probability densities for mutating from Xi−1 to X ′i and from X ′i to Xi−1. e distribution
of the samples in the chain converges to the target distribution in the limit N→∞. In contrast to
traditional rejection sampling, every Metropolis sample is a valid sample. By correlating successive
samples, this method can efficiently explore high-intensity regions of the target distribution. However,
this correlation may come at the cost of a decreased error convergence rate of the secondary integral
estimator constructed from the samples {Xi}N

i=0. e efficiency of themethod crucially depends on the
initial state of the chain and the particularmutation strategy used. Seeding the process with a sample in
a high-intensity region and developing a goodmutation strategy for the specific problem can therefore
greatly improve its performance.

When it is not strictly required to sample exactly from the given distribution, a practical and efficient
alternative can be to tabulate the pdf (i.e. evaluate it at a finite number of locations) and construct an
approximation from which samples can be drawn easily. e approximation is usually piece-wise ana-
lytical – an array of simple, constant or linear, functions that interpolate the values between the sampled
locations. e inverse CDF is then also piece-wise analytical and can be used to transform canonical
uniform random numbers. is numerical CDF inversion method can be much more efficient than
rejection or Metropolis sampling when the approximation is accurate and the required preprocessing
time and memory storage can be amortized by drawing a large number of samples. Unfortunately,
this method suffers from the “curse of dimensionality” – the cost of building the approximation gener-
ally increases exponentially with dimension, which limits its application to low-dimensional sampling
problems. In Chapter 9 we will use numerical inversion to sample light transport paths in anisotropi-
cally scattering media from high-dimensional joint distributions. To make this method practical, we
will reduce the effective dimensionality of the tabulation by exploiting unique symmetries in the geo-
metric configurations of light transport paths in participating media.

2.5 Variance reduction techniques

emost straightforwardway to improve the accuracy of a secondaryMonte Carlo estimator (Eq. 2.18)
is to reduce its variance by increasing the number of samplesN, as we discussed in Section 2.3.5. Unfor-
tunately, this is also the least efficientway – since the computational cost and the variance of a secondary
estimator respectively increase and decrease linearly with N, its efficiency (Eq. 2.28) is independent of
the number of samples.

Devising efficient estimators is a major topic in Monte Caro and rendering research and is also the
main focus of this thesis. In this section we review some commonly used existing techniques that
aim to lower the variance of an estimator for the same sampling effort. ese techniques are based
on improving the distribution of the samples over the integration domain. e different approaches
mostly complement each other; we focus our discussion on importance sampling as it forms the basis
of our contributions.
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2.5.1 Stratified sampling

Recall that in order to obtain an actual Monte Carlo integral estimate (Eq. 2.16), we need to choose a
probability distribution on the integration domain and draw samples from it. e simplest distribution
is the uniform (i.e. constant) distribution p(x) = 1/|Ω|, where |Ω| denotes the volume of the integration
domain Ω. e resulting method is oen called blindMonte Carlo integration as it does not utilize any
information about the function being integrated.

e easiest way to distribute points uniformly on some domain is to scale canonical uniform random
numbers in [0;1) to the size of the domain. However, this approach can lead to a poor sample dis-
tribution that produces a bad approximation of the integral. Random samples oen clump together,
leaving large holes and possibly missing important features of the integrand. e goal of stratified
sampling is to mitigate this problem by enforcing a more even sample distribution. is is achieved
by subdividing the domain Ω into N non-overlapping strata Ω1, . . . ,ΩN of equal size and placing one
or more random samples inside each stratum. As a result, the sample distribution is much more uni-
form and the clumping significantly reduced. It has been shown that stratification can never increase
the variance compared to pure random sampling; in fact, stratification can oen increase the variance
convergence rate of an estimator [93].

Stratified sampling is a very general variance reduction technique. Since it is an uninformed method,
it can be applied to any Monte Carlo problem. It is widely used in practice, oen in combination with
other, informed variance reduction methods, which exploit some knowledge about the integrand. In
the remainder of this section we will review some of these methods.

2.5.2 Adaptive sampling

e basic idea behind adaptive sampling is to gather information about the integrand during sampling
and use it to concentrate the computational effort where it is likely to pay off most. A simple appli-
cation of this idea is to keep a running estimate of the variance and terminate sampling as soon as
the variance drops below a certain threshold. When computing multiple integrals, e.g. one for each
pixel in a rendered image, this technique allows for allocating a larger portion of the sample budget
to the “more difficult” integrals. is method can introduce bias that can be avoided via two-stage
sampling [75]. Somemore advanced methods detect where the integrand has high variation and place
more samples in such regions [99, 40], while others construct and progressively adapt sampling distri-
butions on-the-fly [32, 102]. Such methods can significantly boost efficiency, however they also suffer
from the aforementioned “curse of dimensionality” as they need to maintain multi-dimensional data
structures that store sampling information.

2.5.3 Russian roulette and splitting

Russian roulette and splitting are two related methods that aim to increase the sampling density in
regions where the integrand is large and decrease it where the integrand is small [2]. ey bare simi-
larity with importance sampling (discussed below), and unlike some adaptive sampling methods are
unbiased.
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e idea of Russian roulette (RR) is to replace an estimator Î with a new estimator

Î RR =

{
1
p Î if ξ < p

0 otherwise,
(2.40)

where ξ∈ [0;1) is a canonical uniform randomnumber. is formulation allows us to probabilistically
avoid the potentially expensive evaluation of Î when we can expect it to have low contribution. e
evaluation probability p ∈ (0;1] should ideally be low when the value of Î is predicted to be low, and
high when it is predicted to be high. Note that the introduced random decision actually results in
an estimator with a higher variance. Nevertheless, Î RR can still have a higher efficiency than Î if the
average time required to evaluate it is lower. In light transport simulation, this technique is particularly
useful for terminating random walks in a scene, as we will discuss in Chapter 4.

Instead of trying to reduce the evaluation cost, splitting replaces a primary multi-dimensional estima-
tor Î(X1, . . . ,Xk) with a secondary estimator

Î split(X1, . . . ,Xk) =
1
N

N

∑
i=1

Î(X1, . . . ,Xs,Xs+1,i, . . . ,Xk,i), (2.41)

which fixes the values of the first s random variables and draws N independent realizations of the
remaining k− s variables. Similarly to Russian roulette, the splitting factor N can be chosen based
on a rough prediction for the value of Î. While this splitting increases the evaluation cost of Î, it can
improve efficiency for high-dimensional integration when the integrand has little variation in the first
s dimensions. Rendering algorithms oen use path splitting, e.g. for estimating the illumination at a
point by sampling multiple light sources or by spawning random secondary paths from the point.

Splitting and Russian roulette can be combined by replacing each primary estimator in the sum in
Equation 2.41 by a corresponding Î RR estimator. Carefully choosing the splitting factor and theRussian
roulette evaluation probabilitymakes it possible to concentrate the sampling effort in important regions
of the integration domain.

2.5.4 Importance sampling

From the very definition ofMonte Carlo integration (Eq. 2.16) it is apparent that the choice of sampling
pdf affects the variance of the estimator. In particular, the values of an estimator vary a lot when high
integrand values f (x) are sampled with low probability p(x) and when low values of f (x) are sampled
with high probability.

Importance sampling is an informed variance reduction technique whose goal is to choose an optimal
sampling pdf that minimizes the estimator’s variance. Interestingly, for any given integrand f (x) the
ideal sampling pdf is known: it is exactly proportional to the integrand, i.e. p(x) = c f (x), where

c =
1∫

Ω f (x)dµ(x)
(2.42)

is a normalization constant which ensures that p(x) integrates to one. Using this pdf yields a zero-
variance primary estimator,

Î(X) =
f (X)

p(X)
=

1
c
, (2.43)



Chapter 2: Monte Carlo integration 17

which has a constant value for all sample points X . Slightly counter-intuitively, this means that we can
obtain the exact answer with just a single sample. However, using this pdf is impractical (and actually
does not even make sense), as it requires already knowing the value of the desired integral in order to
compute the normalization constant c (Eq. 2.42). Nevertheless, significant variance reduction can be
achieved by using a pdf p whose shape is similar to f . is is typically accomplished by discarding
or approximating some of the terms of f in order to obtain a simplified function whose normaliza-
tion constant and inverse CDF can be derived easily. Variance can be reduced further by additionally
stratifying the canonical uniform random numbers transformed with the inverse CDF (Sec. 2.5.1).

Importance sampling is a very powerful technique as it can achieve substantial variance reduction at a
low cost when the generation of samples from the chosen distribution is computationally efficient. In
rendering, importance sampling is particularly useful for computing illumination integrals involving
sampling sharp light scattering distributions (e.g. BSDFs) or light sources with non-uniform emission.
e main contributions of this thesis are novel importance sampling techniques for solving the light
transport integral that we will introduce in the following chapter.

2.5.5 Mixture importance sampling

A good importance sampling distribution should ideally be closely proportional to the integrand, but
unfortunately deriving such a pdf can be difficult even for simple functions. As an alternative, complex
sampling distributions can be constructed by composing, or mixing, a number of simple distributions.
One way to achieve this is viamixture importance sampling whose primary estimator

Î mix(X) =
f (X)

∑n
i=1 wi pi(X)

(2.44)

uses a pdf p(x) =∑n
i=1 wi pi(x) that is a convex combination of pdfs, i.e. withwi≥ 0 and∑n

i=1 wi = 1. To
evaluate this estimator, a random pdf pi is first chosen with probability wi and then a sample is drawn
from the that pdf, effectively sampling from the mixture p. Alternatively, the number of samples from
each pdf can be deterministically set to ni = wiN, where N = ∑n

i=1 ni is the total number of samples.
is yields a technique known as deterministic mixture sampling:

Î mix
N =

1
N

n

∑
i=1

ni

∑
j=1

f (Xi, j)

pi(Xi, j)
. (2.45)

where Xi, j are independent random variables with pdf pi. is estimator can have a slightly lower
variance than a secondary estimator that averages N independent realizations of the primary estimator
in Equation 2.44. e difference comes from eliminating the randomness in the number of samples
taken from each pi.

2.5.6 Multiple importance sampling

An even more powerful method for combining different distributions was developed by Veach and
Guibas [144], called multiple importance sampling (MIS). e multi-sample MIS estimator combines
the estimators of n sampling techniques:

Î MIS
N =

n

∑
i=1

1
ni

ni

∑
j=1

wi(Xi, j)
f (Xi, j)

pi(Xi, j)
, (2.46)
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where wi is a weighting function associated with the pdf pi, and ni is the number of samples taken
from pi. is estimator is unbiased as long as the family of weighting functions wi, referred to as the
weighting heuristic, fulfills the following two conditions:
• ∑n

i=1 wi(x) = 1 whenever f (x) ̸= 0, and
• wi(x) = 0 whenever pi(x) = 0.

Veach [142] showed that the power heuristic is a provably good choice for a weighting heuristic in terms
of minimizing the variance of the combined estimator in Equation 2.46:

wi(x) =
[ni pi(x)]β

∑n
k=1[nk pk(x)]β

, (2.47)

where the exponent β≥ 0 is a parameter. e special case for β = 1 is called the balance heuristic, for
which the estimator simplifies to

Î MIS
N =

n

∑
i=1

1
ni

ni

∑
j=1

ni pi(Xi, j)

∑n
k=1 nk pk(Xi, j)

f (Xi, j)

pi(Xi, j)
=

1
N

n

∑
i=1

ni

∑
j=1

f (Xi, j)

∑n
k=1(nk/N)pk(Xi, j)

, (2.48)

where N = ∑n
k=1 ni. is estimator is equivalent to the deterministic mixture importance sampling

estimator (Eq. 2.45) which can consequently be considered a special case of multiple importance sam-
pling. Veach [142] proved that no other weighting heuristic can result in an estimator with a much
lower variance than the balance heuristic.

Another good choice is themaximum heuristicwhich effectively partitions the integration domain into
disjoint regions and uses only the technique with the highest sampling probability for each region:

wi(x) =

{
1 if ni pi(x) = maxk [nk pk(x)] ,
0 otherwise.

(2.49)

While this heuristic generally results in a higher-variance estimator than the power heuristic, in prac-
tice it can oen bemore efficient as it allows us to avoid the evaluation of the integrand f (x) for samples
x with zero weight2.

It is also possible to combine n different techniques into a primaryMIS estimator. e one-sampleMIS
estimator is defined as:

Î MIS = wI(XI)
f (XI)

cI pI(XI)
. (2.50)

Here, we first choose a technique by drawing a random integer I ∈ {1, . . . ,n} from a discrete distri-
bution {c1, . . . ,cn}, where ci is the probability of choosing pdf pi, with ∑n

i=1 ci = 1. en, a random
sample XI is drawn from the distribution pI . is estimator is unbiased under the same two condi-
tions on the weighting functions wi above. Veach [142] proved that in this one-sample case no other
weighting heuristic can result in lower variance than the balance heuristic. As in the multi-sample
case, using this heuristic corresponds to sampling from a mixture distribution, yielding the estimator
in Equation 2.44 with wi = ci.

Multiple importance sampling (MIS) is particularly useful when integrating complex functions for
which it is difficult to derive one single good sampling distribution. For such cases, MIS provides
a general and powerful framework for combining the estimates of a number of distributions while

2Note that this optimization is not possible with the power heuristic which only yields weights wi(x) = 0 when pi(x) = 0,
and such points x are never sampled by technique i in the first place.
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preserving the qualities of each, oen resulting in a substantial variance reduction over using just one
technique. e key to the robustness of the combination heuristics described above is the assignment
of weights proportional to the sampling pdfs of the individual techniques. is weighting scheme is
based on the observation that a larger pdf value most oen results in a lower-error estimate. at same
observation also makes it possible to analyze the relative efficiency of different sampling techniques by
simply comparing the values of their pdfs at a given point x, as we will do repeatedly in the following
chapters. We will also make extensive use of multiple importance sampling to combine various Monte
Carlo techniques for solving the light transport problem.
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Mathematical Models
of Light Transport 3
Photographic cameras and the human eyes are comprised of a large number of light sensors. When
we release the camera shutter or open our eyes, each sensor records the light falling on it. e data
collected by all sensors constitutes an image of the visible environment. is incident light has been
originally emitted by some light source and has traveled throughout the environment by potentially
bouncing, i.e. scattering, a number of times at objects’ surfaces and/or in participating media before
reaching a sensor.

In this thesiswe are interested in the problemof producing a digital image of a virtual three-dimensional
environment from the perspective of a virtual observer. An image is a rectangular array (matrix) of
color values, each corresponding to the response of a light sensor. Before we can generate such an
image, the environment first needs to be modeled on a computer. is involves obtaining a represen-
tation of the scene geometry as well as defining the appearance of the objects (i.e. their light scattering
properties), the emission characteristics of the light sources, and the light sensitivity of the observer’s
eye. With this in place, we can perform a simulation of the light transport in the virtual scene and com-
pute the response of each sensor. is process of synthesizing an image from a given scene description
is called rendering and is the focus of our work.

e key to rendering a photorealistic image is to compute the lighting in the scene in a physically
plausible way. is means that the light transport simulation must obey the same laws that govern
the propagation and scattering of light in the real world. Having a formal definition of the rendering
problem based on these laws, numerical solutions can be devised to obtain realistic-looking images.

In this chapter, we introduce the concepts and definitions required to describe the problem that every
global illumination rendering algorithm must solve. We present a formulation of light transport as an
integration problem to which we will develop practical numerical solutions in the following chapters.
e coveredmaterial is described at a fairly high level and is notmeant to be exhaustive. For an in-depth
introduction to the foundations of physically-based rendering we refer the reader to the distinguished
books of Dutré et al. [30] and Pharr and Humphreys [109].

3.1 Light models

e human effort to understand the nature of light has a long history and many theories have been
proposed over the centuries [48]. e most comprehensive model available today, quantum optics,
explains all known light phenomena at a submicroscopic (electron) level; these include black body
radiation, fluorescence, and phosphorescence. A simplification of this model, wave optics, captures
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effects that arise when light interacts with objects of size comparable to its wavelength, such as diffrac-
tion and polarization. However, neither of these models is commonly used in computer graphics as
they are usually considered too detailed for the purpose of image synthesis.

In this thesis we adhere to an even more simplified but widely used light model – geometric optics, or
ray optics. is model allows us to simulate most light phenomena we see in our daily life in a plausible
way while making some useful simplifying assumptions about the behavior of light. Most importantly,
geometric optics assumes that (1) light travels along straight lines and that (2) light propagates and
scatters instantaneously in the environment. e first assumption allows us to use ray tracing tech-
niques to efficiently track light particles in a scene. e second assumption allows us to formulate the
rendering problem as an integral over a steady-state (i.e. equilibrium) distribution of light energy in
the scene. is simplified model cannot account for optical effects such as diffraction, interference,
or phosphorescence. However, it provides an accurate approximation when the wavelength of light is
small compared to the size of the structures with which light interacts, which is typically the case for
the scenes considered in most practical applications.

3.2 Basic radiometry

Under the geometric opticsmodel, the task of a global illumination algorithm is tomeasure the eye sen-
sor response to the equilibrium distribution of light in the scene. To do this, we first need to compute
this equilibrium distribution, which requires an understanding of the physical quantities that repre-
sent light energy. Radiometry is the science that studies electromagnetic radiation, including visible
light. Below we describe some relevant radiometric quantities that we will make use of in this thesis.

3.2.1 Radiant power or flux

Flux expresses the total energy flow, incident at or exiting from a surface or a volume, per unit time:

Φ =
dQ
dt

. (3.1)

Flux is measured in watts (joules/sec). A common use of this quantity is to specify the total emission
power of light sources, e.g. 60W for a typical light bulb (assuming that all the electric energy consumed
by the bulb is actually emitted as light).

3.2.2 Irradiance and radiosity

Irradiance represents the flux arriving at a surface point x, per unit surface area:

E(x) =
dΦ
dx

, (3.2)

where we use dx is a shorthand notation for the differential area measure. Radiosity, B, represents
power leaving a surface, and has the same definition as irradiance. Both quantities are functions of
position, x, and aremeasured inwatts/m2. ey can be used to compactly encode the light equilibrium
in a directionally-independent form, which is especially practical for scenes with mostly diffuse (i.e.
uniformly scattering) objects.



Chapter 3: Mathematical models of light transport 23

3.2.3 Radiance
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Figure 3.1: Spherical coordinates.

Radiance is the most basic quantity used in global illumina-
tion algorithms, as it also accounts for the directionality of light
flow. Radiance represents the incident or exitant energy at a
point x in a given direction ω, per unit surface area perpendic-
ular to the direction and per unit solid angle. It is measured in
watts/(steradian ·m2):

L(x←ω) =
d2Φ

|cosθ|dxdω
. (3.3)

Here, dω denotes differential solid angle:

dω = |sinθ|dθdϕ, (3.4)

and cosθ = nx ·ω, where nx is the surface normal at x (see Fig-
ure 3.1). e cosine term appears only in the radiance formulation for surface points, and not for
points in media. An intuitive explanation for this term is that the power arriving at grazing angles is
smeared out over a larger area on the surface.

Radiance encodes the spatio-directional light distribution in a scene. We will denote incident and
exitant radiance respectively byL(x←ω) andL(x→ω). Integrating these two quantities over the sphere
around x gives the irradiance and radiosity respectively.

3.2.4 Importance

ough not strictly a radiometric quantity, importance is a very useful hypothetical quantity in com-
puter graphics. It is the dual of radiance and expresses the eye’s or the camera’s sensitivity to light.
While radiance is emitted from light sources, importance is “emitted” from the eye. It is denoted byW
and is by conventionmeasured in the same units as radiance (although without any physical meaning).

3.3 Wavelength dependency and color

e radiometric quantities described in the previous section are in general not only functions of posi-
tions and directions but also of the wavelength of light. Whenwavelength is specified, spectral radiance
is the quantity corresponding to radiance. Radiance is then defined as the integral of spectral radiance
over the wavelength spectrum:

L(x←ω) =
∫

spectrum

L(x←ω,λ)dλ. (3.5)

Since radiance represents the total intensity over all wavelengths, it does not carry any color informa-
tion. In order to render color images, one should ideally measure spectral radiance in the scene for
every wavelength in the visible spectrum. Fortunately, this problem can be simplified by exploiting
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the limitations of the human visual system: the human eye has only three different types of light re-
ceptors, each with higher sensitivity respectively to the red, green, and blue regions of the visible light
spectrum. According to the tristimulus theory, any perceivable color can be represented by just three
scalar values – the responses of the three types of receptors to spectral radiance. For any given point
and direction in the scene, we can then perform just three measurements, Lr, Lg, and Lb, one for each
of the red, green, and blue components:

Lr(x←ω) =
∫

spectrum

R(λ)L(x←ω,λ)dλ, (3.6)

where R(λ) is the response curve of the red sensor. Lg and Lb are defined analogously. ese three
values are sufficient for reproducing color in a digital image.

e formulas describing the equilibrium radiance at a point, presented in Section 3.5 below, are gener-
ally wavelength-dependent. However, this dependence is due to only a few terms, and the remaining
terms come out of the wavelength integral in Equation 3.6. In most practical scenes, the wavelength-
dependent terms are the ones that describe the spatial (i.e. positional) variation of light emission and
scattering in the scene. is variation is typically specified via three-channel procedural or tabulated
textures whose values are already preconvolved with the R, G, and B response curves. is means that
in most scenes we can directly measure the “radiance responses” Lr, Lg and Lb. With a slight abuse
of terminology, in the remainder of this thesis we will refer to the latter three quantities as radiance.
To keep the exposition simple, we will also omit the subscripts, and note that whenever radiance L
appears in an expression, three separate measurements, for Lr, Lg, and Lb respectively, must be per-
formed in practice. Note that spectral radiance measurements are still required for rendering effects
like dispersion in the presence of materials that scatter light in wavelength-dependent directions.

3.3.1 Luminance

We oen need to measure the overall brightness appearance of light, regardless of hue. Color theory
postulates that the apparent brightness is given by the luminance, which can be estimated from Lr, Lg,
and Lb [98]:

Luminance[L] = 0.21Lr+0.72Lg+0.07Lb. (3.7)

Above we have used the coefficients given by Pharr and Humphreys [109, Chap. 5]. Note that most
weight is given to the green channel, which accounts for the fact that the human eye is much more
sensitive to the green part of the visible light spectrum.

3.4 Emission, propagation, and scattering

Under the geometric optics model, it is useful to think of light in terms of infinitesimally small light
particles, or photons. Every photon starts its journey at a light source and travels along a straight line,
or ray, until it interacts with a surface of a solid object or with a particle in amedium. Upon interaction,
a photon can be either absorbed or scattered in another direction to continue propagating in the scene.
In this section we describe the mathematical models for light emission, propagation, and interaction,
which are the building blocks for describing the energy equilibrium in a scene.
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Figure 3.2: Schematic illustration of light emission, propagation, and scattering. Le: Light source emis-
sion is described by emission distribution functions. Middle: In a vacuum, the radiance leaving point x is
equal to the radiance arriving at point y. In participating media, radiance is attenuated due to absorption
and out-scattering. Right: Scattering at a surface or in a medium is described by spherical distribution
functions similar to the ones for emission.

3.4.1 Emission

Light emission can be mathematically modeled via an emission distribution function Le(x→ω) that de-
fines the emitted radiance at any surface or medium point x in the scene in direction ω (see Figure 3.2).
Diffuse (i.e. uniform) emission is described by a simple constant distribution over the (hemi-)sphere.
Generally, the shape of an emission distribution, also called emission profile, can be much more com-
plex, particularly for light sources used in illumination engineering [97]. Both the total emitted power
(radiosity) and the shape of the emission profile can vary across the light’s surface or volume.

Similarly to light source emission, the spatio-directional importance emission of the eye can be de-
scribed by a corresponding distribution functionWe(x→ω) which models the response of the sensors.

3.4.2 Vacuum propagation

In a vacuum, the law of energy conservation states that all flux leaving a differential surface around
a point x in the direction of a differential surface around another point y must arrive at that surface.
Assuming there is no obstructing geometry between x and y, i.e. that the two points aremutually visible,
from this law it follows that

L(x→ωxy) = L(y←ωyx), (3.8)

which means that the radiance leaving point x in direction ωxy toward point y is equal to the radiance
arriving at point y from direction ωyx (see Figure 3.2) [30, Sec. 2.3.3].

Using the definition of radiance (Eq. 3.3) and the relation between differential solid angle and differ-
ential surface area,

dωxy = dy
|ny ·ωxy|
∥x−y∥2 , (3.9)

where ny is the surface normal at y, we can write the differential power transferred from x to y as

d2Φ
dxdy

= L(x→ωxy)G(x,y). (3.10)
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e geometry termG above accounts for the distance between the differential surfaces and theirmutual
orientation:

G(x,y) =
|nx ·ωxy||ny ·ωyx|
∥x−y∥2 . (3.11)

Integrating Equation 3.10 over the areas of two mutually visible surface patches gives the total flux
transferred between them.

3.4.3 Medium propagation

When media occupy the space between objects, the assumption of constant radiance along straight
lines does not necessarily hold any more, because media participate in the light transport in the scene.
Light interaction with participating media is described via a probabilistic model that treats a medium
as a collection of infinitesimally small particles and considers the aggregate behavior of these particles
as light travels through the medium.

When a photon enters a medium, it can either miss all particles and continue unaffected, or it can
interact with the particles causing a change in the radiance along the photon ray. e probability for
an interaction to occur is related to the extinction coefficient, σt, of the medium. is quantity is the
inverse mean free path of the medium – the average distance traveled by a photon before interaction,
and depends on the density and size of the particles. When an interaction does occur, the photon can
be either absorbed or scattered in another direction. e relative probabilities for these two events are
given by the absorption coefficient σa and the scattering coefficient σs. Both of these coefficients can
vary across the medium, in which case the medium is called heterogeneous; when they are constant,
the medium is homogeneous. e relation between these three coefficients is: σt(x) = σa(x)+σs(x).

e radiance attenuation along a ray segment due to absorption and out-scattering is given by the
transmittance (see Figure 3.2):

Tr(x,y) = e−τ(x,y) = e−
∫ ∥x−y∥

0 σt(x+tωxy)dt , (3.12)

where the optical thickness τ(x,y) is the integral of the extinction coefficient along the ray segment
between x and y. In homogeneous media, the optical thickness simplifies to τ(x,y) = σt∥x− y∥.
Note that the optical thickness takes values in the interval [0;∞), whereas for transmittance we have
Tr(x,y) ∈ [0;1]. e absence of participating media corresponds to σt = 0, in which case the optical
thickness is always zero and the transmittance between any two points is simply 1.

3.4.4 Visibility

Opaque objects can be thought of as infinitely dense media with σt =∞ which, when intersected by
a ray segment, make the transmittance Tr(x,y), and thus the radiance between x and y, drop to zero.
However, for convenience we introduce a separate visibility term that explicitly accounts for themutual
visibility between the two points:

V (x,y) =

{
1 if x and y are mutually visible,
0 otherwise.

(3.13)
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We can now generalize Equation 3.10 to describe the differential flux from x yo y, accounting for both
medium transmittance and visibility:

d2Φ
dxdy

= L(x→y)G(x,y)Tr(x,y)V (x,y). (3.14)

Note that this formula is symmetric, in the sense that the differential flux in the opposite direction,
from y to x, is given by simply replacing L(x→y) by L(y→x) above.

3.4.5 Surface scattering

When a photon hits the surface of an object, it can be either absorbed by the object (and converted to
another form of energy, such as heat) or scattered in another direction and continue its propagation.
e probability for scattering is given by the albedo of the surface material at the intersection location,
which wewill define below. e probability density that a photon coming from directionωi at a surface
point x is scattered in a directionωo is given by the bidirectional scattering distribution function (BSDF):

ρs(x,ωi,ωo) =
dL(x→ωo)

L(x←ωi)|nx ·ωi|dωi
. (3.15)

e BSDF is defined as the ratio between the differential outgoing radiance in direction ωo and the
differential irradiance from direction ωi. By convention, both ωi and ωo point away from the surface.
e BSDF determines the appearance of a surface point, i.e. how bright it looks when illuminated from
direction ωi and viewed from direction ωo.

For any pair of incoming and outdoing directions the BSDF can take any non-negative value. However,
every physically-plausible BSDF must have the following two properties:
• Energy conservation: is property asserts that a surface cannot scattermore light than it receives.

It can be expressed as the following constraint:

αs(x,ωi) =
∫
S

ρs(x,ωi,ωo)|nx ·ωo|dωo ≤ 1, (3.16)

where S is the unit sphere. Here, αs(x,ωi) is the surface reflectance, or surface scattering albedo,
which is the total probability that a light particle coming from direction ωi at x will scatter off
the surface in any direction (rather than being absorbed). Note that all real-world materials have
albedo strictly smaller than one, meaning that there is always a non-zero probability for a photon
to be absorbed.

• Reciprocity: is property ensures that the value of the BSDF remains unchanged when the in-
coming and outgoing directions are swapped:

ρs(x,ωi,ωo) = ρs(x,ωo,ωi). (3.17)

is means that the surface scattering is invariant to the direction of light flow. Many global
illumination algorithms rely on this property to simulate the light transport distribution in a
scene starting from the eye.
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Figure 3.3: Various classifications of surface and medium scattering distribution functions.

BSDF classification
Generally speaking, a surface defines the boundary, or interface, between two dissimilar media. When
light strikes a surface it can be either reflected back into the medium it came from or transmitted into
the other medium, if the latter is transparent. e BSDF describes how light coming from a particular
direction is distributed in all other directions. is scattering distribution can be roughly categorized
as diffuse, glossy, or specular (see Figure 3.3). Diffuse BSDFs, which scatter light uniformly, are de-
scribed by an isotropic, i.e. constant, (hemi-)spherical pdf. Glossy BSDFs scatter light preferentially
in a cone of directions. Specular BSDFs scatter light in a single direction and are mathematically mod-
eled via Dirac delta distributions. Integrals involving delta BSDFs must be evaluated with care because
their associated measure is not the usual Lebesgue measure, as detailed by Glassner [36, Sec. 13.8.2]
and Veach [142, Sec. 5.2]. Recently, Jakob and Marschner [57] presented an interpretation of specular
scattering based on path-space manifolds rather than delta distributions.

e BSDFs of real-world materials can have complex shapes and are oen modeled as mixtures of the
three basic types discussed above. Appearance modeling is a broad research topic that is outside the
scope of this thesis. Comprehensive overviews of surface scattering models can be found in the books
of Dorsey et al. [26] and Pharr and Humphreys [109, Chap. 8].

3.4.6 Medium scattering

Similarly to the surface case, when a photon traveling through a medium interacts with one of its
particles, it can either be absorbed or scattered in another direction. e probability for scattering is
given by themedium scattering albedo:

αm(x) =
σs(x)
σt(x)

=
σs(x)

σs(x)+σa(x)
. (3.18)

e directional scattering distribution is given by the phase function of the medium:

ρm(x,ωi,ωo) =
dL(x→ωo)

L(x←ωi)dωi
, (3.19)
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whose definition is very similar to that of the surface BSDF (Eq. 3.15) but without the cosine term
in the denominator. In contrast to the BSDF, however, by convention the directions ωi and ωo both
point in the direction of light flow (see Figure 3.3). Unlike the BSDF, the phase function is an actual
probability distribution, i.e. it integrates to one over the sphere, and also usually does not vary with
position in the medium. Isotropic scattering is described by a constant phase function, ρm ≡ 1/4π, and
various distributions have been proposed to model anisotropic scattering. One such distribution is the
Henyey-Greenstein (HG) function, which is widely used in graphics:

ρHG(ωi,ωo) =
1−g2

4π [1+g2−2g(ωi ·ωo)]
1.5 . (3.20)

e parameter g controls the anisotropy: g = 0 makes the distribution constant (isotropic), and when
g approaches 1 or -1 the function converges to a forward or backward scattering delta distribution
(see Figure 3.3). Note that the HG phase function is one-dimensional and circularly-symmetric, as it
depends only on the cosine of the deflection angle between the incident and the outgoing directions.

3.5 Integral formulation of light transport

In the previous sections we described the basic radiometric quantities and principles of light emission,
propagation and scattering. We now put all these components together to formulate the light transport
problem as an integral over the equilibrium light distribution in the scene.

3.5.1 The measurement equation

e value of each pixel in a rendered image is the response of a corresponding virtual eye sensor. is
response is given by themeasurement equation:

I =
∫
M

∫
S

We(x→ω)L(x←ω)|nx ·ω|dωdx, (3.21)

which expresses the pixel value as an integral of incident radiance multiplied by sensitivity. Here,M
is the union of all surface points in the scene, but the importance emission function We effectively
restricts the integration to the surface of the sensor. e incident radiance L(x←ω) at a sensor point
is given by the surface rendering equation, described next.

3.5.2 The surface rendering equation

As discussed in Section 3.4, in a vacuum the incident radiance L(x←ω) at point x from direction ω is
equal to the outgoing radiance at another surface point y in the opposite direction, −ω. is equality
can be expressed as:

L(x←ω) = L(y→−ω) = L(r(x,ω)→−ω), (3.22)
where the point y is given by y = r(x,ω), with r(x,ω) being the ray tracing operator which returns the
first visible point from x in direction ω. us, to solve the measurement equation (Eq. 3.21), we need
to compute the outgoing radiance from points visible from the eye in directions back to the eye.
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e outgoing radiance at a scene point x in direction ωo is given by the rendering equation (RE) which
was first formulated by Kajiya [66] and Immel et al. [54]:

L(x→ωo) = Le(x→ωo)︸ ︷︷ ︸
self-emitted

+ Ls(x→ωo)︸ ︷︷ ︸
scattered

. (3.23)

is equation states that the outgoing radiance is the sum of the self-emitted radiance at x and the
scattered radiance incident from all directions around x. e scattered radiance is given by:

Ls(x→ωo)︸ ︷︷ ︸
outgoing

=

∫
S

ρs(x,ωi,ωo)L(x←ωi)︸ ︷︷ ︸
incident

|nx ·ωi|dωi

=
∫
S

ρs(x,ωi,ωo)L(r(x,ωi)→−ωi)︸ ︷︷ ︸
outgoing

|nx ·ωi|dωi

=
∫
M

ρs(x,ωxy,ωo)L(y→ωyx)︸ ︷︷ ︸
outgoing

G(x,y)V (x,y)dy.

(3.24a)

(3.24b)

(3.24c)

In Equation 3.24b we have used Equation 3.22 to express the incident radiance at one point as the
outgoing radiance at another point. Equation 3.24c expresses the scattered radiance as an integral over
the union of all scene surfaces (rather than as an integral over the sphere of incoming directions). e
geometry term G(x,y) appears as a result of the change of the integration variable (see Equation 3.9).
e visibility termV (x,y) accounts for the fact that the integral now considers all surface points in the
scene and not only the ones visible from x.

According to Equation 3.24, in order to compute the outgoing radiance at a point x, we need to recur-
sively compute the outgoing radiance at all surface points that can contribute energy to x.

3.5.3 The volume rendering equation

In the general case where there are participating media in the scene, the incident radiance L(x←ω) is
given by the radiative transfer equation (RTE) [8], also known as the volume rendering equation:

L(x←ω) = Tr(x,y)L(y→−ω)︸ ︷︷ ︸
attenuated surface radiance

+

d∫
0

Tr(x,xt)
[
σa(xt)Le(xt→−ω)+σs(xt)Ls(xt→−ω)

]
︸ ︷︷ ︸

attenuated self-emitted and in-scattered medium radiance

dt,

(3.25a)

(3.25b)

where y = r(x,ω) is the first visible surface point from x along ω, the distance to this point is d =
∥x− y∥, and xt = x+ tω. is equation states that the radiance reaching x from direction ω is equal
to the attenuated outgoing radiance from y, given by the RE (Eq. 3.23), plus the accumulated radiance
contribution from anymedia intersected by the ray segment between x and y. emedium radiance is
the integral of the attenuated self-emitted and in-scattered radiance along the ray segment. Finally, the
in-scattered radiance at point xt in a medium is the integral of the incident radiance from all directions
around the point, which is the volumetric equivalent of the surface scattering equation (Eq. 3.24):

Ls(xt→−ω) =
∫
S

ρm(ωi,ω)L(xt←ωi)dωi. (3.26)
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Figure 3.4: Illustration of a length-3 light transport path x = x0x1x2x3, along with the terms of its
measurement contribution (colored in orange).

3.5.4 Path integral formulation

emeasurement equation (Eq. 3.21), togetherwith the rendering equation (Eq. 3.23) and the radiative
transfer equation (Eq. 3.25), provides a well-defined formulation of the global illumination problem
as an integral equation over the the equilibrium radiance distribution in a scene. Unfortunately, the
recursive structure of this formulation gives only a local view of the illumination at a point in the scene
and does not provide a flexible framework for developing a wide variety of practical solutions.

Various reformulations of the measurement equation have been proposed, such as adjoint equations
using importance as a transport quantity as well as series expansions of these equations using linear
operators [30, 142, Chap. 4]. ese formulations provide more insight into the light transport problem
and lay the ground for developing practical methods for computing the energy equilibrium by tracing
particles from the eye or from the lights. However, suchmethods can simulate transport starting either
only from the eye or only from the lights, and it is not obvious from these different formulations when
to choose one approach over the others or how to combine different approaches.

To address these theoretical limitations, Veach reformulated the light transport problem as a pure inte-
gration problem [142, Chap. 8]. His path integral expresses each pixel measurement in a conceptually
very simple form:

I =
∫
Ω

f (x)dµ(x). (3.27)

is integral computes the energy contribution of every light transport path x of arbitrary length to a
particular pixel. Veach derived the above equation for light transport in vacuum by starting from the
measurement equation (Eq. 3.21) and recursively expanding the rendering equation (Eq. 3.23) using
the surface form of the scattering equation (Eq. 3.24c). is results in an infinite sum of integrals
over the paths of all lengths, which Veach into a single integral over the union of all paths of any
possible length Ω. is formulation can be analogously generalized to also handle participating media
by expanding the radiative transfer equation (Eq. 3.25). Belowwewill only define the terms that appear
in Equation 3.27 and refer the interested reader to prior works for the full derivation [142, 100, 58, 56].

A light transport path x is defined as a tuple of vertices:

x = x0x1 . . .xk, (3.28)

where each vertex can lie on a surface or in a medium. e length of a path, k, is the number of its
(imaginary) edges, each connecting two consecutive vertices (see Figure 3.4). Ω is the space of all light
transport paths of all lengths and dµ(x) is a differential measure on this space, defined for a length-k
path as:

dµ(x) = dµ(x0)dµ(x1) . . .dµ(xk), (3.29)
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where the differential measure of a vertex x is

dµ(x) =

{
dA(x) if x is on a surface,
dV (x) if x is in a medium.

(3.30)

Above, dA(x) and dV (x) denote the differential area and volume measures, respectively.

e only thing le to define is the measurement contribution function f (x), which has the following
form:

f (x) = ρ(x0)T (x0 . . .xk)ρ(xk), (3.31)

where themeasurement throughput T is defined as:

T (x0 . . .xk) = Tr(x0,x1)G(x0,x1)V (x0,x1)
k−1

∏
i=1

ρ(xi)Tr(xi,xi+1)G(xi,xi+1)V (xi,xi+1). (3.32)

e vertex scattering term ρ(xi) above is defined as:

ρ(xi) =


Le(x0→ωx0x1) if i = 0,
We(xk→ωxkxk−1) if i = k,
ρs(xi,ωxi−1xi ,ωxixi+1) if xi is on a surface,
ρm(xi,ωxi−1xi ,ωxixi+1)σs(xi) if xi is in a medium.

(3.33)

e definitions of the transmittance term Tr(x,y) and the visibility term V (x,y) are given by Equa-
tions 3.12 and 3.13 respectively. Finally, G(x,y) is a generalized geometry term that operates on both
surface and medium points:

G(x,y) =
D(x,ωxy)D(y,ωyx)

∥x−y∥2 , (3.34)

where the foreshortening term D(x,ω) is defined as

D(x,ω) =

{
|nx ·ω| if x is on a surface,
1 if x is in a medium.

(3.35)

Figure 3.4 illustrates a length-3 path along with all the terms associated with its measurement contri-
bution.

Equation 3.27 describes the rendering problem as a pure integration problem with a very simple struc-
ture. A single expression defines the value of each pixel measurement, as opposed to the RE and the
RTE which describe the equilibrium radiance distribution via recursive integral equations. e path
integral avoids adjoint formulations, intermediate quantities like radiance and importance, or having
to choose between these alternatives. It provides a tidy and flexible foundation for the development of
global illumination algorithms and enables the use of general-purpose Monte Carlo integration tech-
niques as well as variance reduction techniques such as multiple importance sampling.

3.5.5 Path classification

It is oen useful to classify light transport paths according to the type of scattering distribution at each
vertex. We adopt the notation of Heckbert [49] which characterizes each interaction along a path from
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a light source (L) to the eye (E) as either diffuse (D) or specular (S). We allow D to also denote any
scattering distribution that is non-zero over a finite solid angle (e.g. diffuse or glossy), while S only
denotes (delta) distributions defined over a set of directions with a zero measure.

With this notation, any path can be labeled with a string given by the regular expression L(S|D)∗E .
For example, a length-3 diffuse path is denoted by LDDE . On the other hand, a caustic directly seen
from the eye is produced by L(S|D)∗SDE paths, and a caustic seen through reflection or refraction is
produced byL(S|D)∗SDS+E paths. Veach extended this notation and usedD and S to also describe the
emission characteristics of light sources and sensors [142, Sec. 8.3.2], but in this thesis we will adhere
to Heckbert’s original notation.
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Monte Carlo Solutions
for the Path Integral 4
egoal of every physically-based rendering algorithm is to solve themeasurement equation (Eq. 3.21)
for each image pixel or, equivalently, its path integral formulation (Eq. 3.27) which expresses the mea-
surement as the sum of the differential contributions of all possible light transport paths in the scene.
In this chapter, we describe the application of Monte Carlo integration to this light transport problem.
We start by formulating a few generic estimators for the path integral and introduce the notion of a
path sampling technique. We then review some existing methods for rendering scenes containing sur-
faces and participating media and express these methods as different path sampling techniques within
the path integral framework. is will lay the ground for the developments in the following chapters
where we will devise new path sampling and variance reduction techniques to address some of the
limitations of those methods.

4.1 Path integral estimators

Following the standardMonte Carlo definitions (Sec. 2.2), an unbiased primary estimator for the light
transport integral in Equation 3.27 has the form

Î =
f (x)
p(x)

, (4.1)

with E
[
Î
]
= I. To obtain an actual pixel estimate we need to first sample a random path x = x0 . . .xk

with a random length k and then evaluate its measurement contribution f (x) as well as its pdf which
is the joint distribution of its vertices: p(x) = p(x0, . . . ,xk). e path contribution is always given by
Equation 3.31, regardless of how x is sampled. Our task therefore reduces to: (1) finding a suitable
path sampling technique for constructing a random path x and (2) deriving the path probability density
function associated with this technique. Each individual path sampling technique yields a different
path pdf and thus a different estimator of the form given in Equation 4.1 above.

A secondary estimator for Equation 3.27 can be constructed by averaging the primary estimators of N
independent samples, i.e. paths:

ÎN =
1
N

N

∑
i=1

f (xi)

p(xi)
. (4.2)

e path integral framework makes a clear distinction between the energy contribution of a path and
its sampling probability density, which enables the use ofmultiple importance sampling (MIS). Amulti-
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sample MIS estimator for Equation 3.27 has the form

Î MIS =
n

∑
i=1

1
ni

ni

∑
j=1

wi(xi, j)
f (xi, j)

pi(xi, j)
, (4.3)

which combines the primary estimators of n different path sampling techniques, where ni denotes the
number of paths xi, j sampled from each technique with pdf pi, weighted by the heuristic wi.

4.2 Path sampling techniques

Using any of the above estimators, the task of an unbiased Monte Carlo rendering algorithm boils
down to sampling light transport paths. Importance sampling theory postulates that the joint density
of the path vertices should ideally be proportional to the measurement contribution function f (x).
Unfortunately, sampling from such a joint distribution is almost never possible in practice since the
behavior of f is strongly scene-dependent and generally unpredictable. It can contain discontinuities
in the visibility termV , singularities in the geometry termG, as well as arbitrary variations in the trans-
mittance term Tr and the scattering term ρ (see Section 3.5.4 for the definitions of these terms). is
makes analytic marginalization and inversion intractable. In fact, the complex shape of the contribu-
tion function is the very reason for choosing Monte Carlo integration in the first place. Furthermore,
the high – or rather, infinite – dimensionality of the sampling space makes numerical inversion of the
entire integral impractical and finding good analytical pdf approximations extremely challenging.

e difficulty with global, or joint, path sampling comes from the required coordination between the
sampling distributions for the individual vertices. e complexity of the problem can be greatly re-
duced by opting for a local sampling approach instead. Most existing rendering algorithms employ
techniques that sample vertices incrementally, one by one, by tracing random trajectories throughout
the scene. ese so-called random walks use local sampling decisions that simulate the probabilistic
propagation and scattering behavior of real-world photons. Some methods trace random walks from
the light sources, others from the eye, and some from both directions. In the remainder of this section
we describe the most commonly used path sampling techniques based on random walks.

4.2.1 Randomwalks

A random walk is a random process that consists of a sequence of discrete steps and is usually “memo-
ryless”: the next state solely depends on the current state and not on the entire history of the process. In
computational physics, randomwalks are used to trace the trajectories ofmolecules traveling in a liquid
or a gas or to study the motions and interactions of neutrons with materials. Random walks that simu-
late the stochastic physical behavior of particles are called analog walks in physics literature [129, 90].

Randomwalks were introduced to computer graphics by Kajiya [66] in the same work that formulated
the rendering equation (Eq. 3.23). Most existingMonte Carlo rendering algorithms use randomwalks
to construct light transport paths incrementally, choosing the sampling distribution for the next vertex
based on information locally available at the current vertex. A walk typically starts by sampling the
initial path vertex either on a light source or on the eye lens, aer which the path is extended with
new vertices via a sequence of propagation and scattering sampling decisions. Eventually the process
terminates – either deterministically or randomly. e walk is analog if its sampling decisions exactly
model the physical transport of light in the scene, as detailed below.
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Path notation
Recall from Section 3.5.4 that a length-k path is denoted by x = x0 . . .xk, where vertex x0 is on a light
source and xk is on the eye lens. We will use also a different, redundant path notation to explicitly
indicate the direction of the random walk that sampled the path. We will use y = y0 . . .yk to denote
paths sampled starting from a light source and z = zk . . .z0 for paths sampled from the eye. is no-
tation conveniently indexes the vertices in the order of their generation – vertex x0 ≡ y0 ≡ zk is on a
light source and xk ≡ yk ≡ z0 is on the eye lens. e difference in the indexing is important to keep
in mind when evaluating the terms of the measurement contribution function (Eq. 3.31) which are
defined unambiguously in the x-notation.

In the remainder of this subsectionwe adhere to the x-notation, but thanks to the symmetric definitions
of the scattering term1 and the path measurement throughput (Sec. 3.5.4), all equations below remain
valid when x is replaced by y or z.

Subpaths and sampling throughput
As we trace a random walk, we can incrementally evaluate the measurement contribution of the sam-
pled path. To this end, we first define the measurement contribution of a subpath x0 . . .xi of x:

fi(x) =

{
1 if i = 0,
fi−1(x)ρ(xi−1)Tr(xi−1,xi)G(xi−1,xi)V (xi−1,xi) otherwise,

(4.4)

where the definitions of the four contribution terms on the right-hand side were given in Section 3.5.4.
e corresponding subpath pdf is2

pi(x) =

{
p(x0) if i = 0,
pi−1(x)p(xi|x0, . . . ,xi−1) otherwise.

(4.5)

In practice, the pdf for each vertex x j above is typically conditioned on atmost the one or two preceding
subpath vertices.

e sampling throughput, a.k.a. “energy”, Ci associated with each path vertex xi is defined as the mea-
surement contribution of the subpath x0 . . .xi divided by its pdf. e sampling throughput is essentially
a partial evaluation of a corresponding primary estimator (Eq. 4.1):

Ci(x) =
fi(x)
pi(x)

=

{
1

p(x0)
if i = 0,

Ci−1(x)
ρ(xi−1)Tr(xi−1,xi)G(xi−1,xi)V (xi−1,xi)

p(xi|x0,...,xi−1)
otherwise.

(4.6)

For a randomwalk to be analog, the vertices xi should be sampled in succession such that the sampling
throughput remains constant, just like the power of a real-world photon does not change as it travels in
the environment and interacts with matter. is can be achieved by importance sampling the product
of the four measurement contribution terms in Equation 4.4, as we describe next. e process of
sampling a random walk is illustrated graphically in Figure 4.1.

1Note that care must be taken to ensure that the scattering term ρ(x) is symmetric for refractive BSDFs [142, Chap. 7].
2Strictly speaking, we should denote the pdfs of x0 and xi by pX0(x0) and pXi|X0 ...Xi−1(xi|x0 . . .xi−1), respectively, to make

it clear that the distribution for every vertex is generally different. For the sake of keeping the notation succinct, we will omit
the pdf subscripts, and sometimes also the conditional arguments, since usually these are unambiguously inferred by the
context.
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ωxixi+1

ωx0x1

. . . . . .

. . 
.

x0

xi
ωxi−1xi

Figure 4.1: A random walk typically begins by sampling a vertex on a light source (as shown here) or the
eye lens, along with an outgoing direction. e path is then incrementally extended with new vertices by
locally importance sampling their associated terms in the path measurement contribution.

Emission
When a random walk starts on the surface or in the medium of a light source, the first path vertex x0
is sampled with an (unconditional) area/volume pdf p(x0) proportional to the total emitted power (i.e.
radiosity) at that point. en, the direction ωx0x1 toward the next (still unknown) vertex x1 is sampled,
with a pdf p(ωx0x1 |x0) proportional to the directional emission ρ(x0→ωx0x1). With these sampling
distributions, the density of the outgoing rays from a light source is proportional to the density of the
photons emitted by it. e sampling decisions are analogous when starting on the eye lens.

Propagation

ωxi−1xi

xi−1 xiti

Figure 4.2: Propagation dis-
tance sampling.

Given a ray (xi−1,ωxi−1xi), the next vertex on the path xi is deter-
mined by sampling a propagation distance ti along the ray. In me-
dia, the distance pdf is typically chosen to be proportional to the
transmittance, Tr(xi−1,xi) (Eq. 3.12) [122, 87]. For homogeneous
media, i.e. with a constant extinction coefficient σt, a closed-form
transmittance sampling routine exists:

ti =−
lnξ
σt

, (4.7)

where ξ ∈ [0;1) is a canonical uniform random number. is expression is obtained by normalizing
Equation 3.12 and inverting the CDF of the resulting pdf. In heterogeneous media, σt(x) can be an
arbitrary function, which makes importance sampling the transmittance much less straightforward.
Commonly used methods are ray marching, which steps along the ray to numerically invert the CDF
of Tr [64, 100, 80], andWoodcock tracking, which is based on rejection sampling [159, 114, 161, 136].

To determine the final location of xi, in addition to sampling a random distance in themedium pierced
by the given ray, we need to find the distance to the closest surface intersection using ray tracing (see
Figure 4.2). e propagation distance ti is then set to the smaller of the two distances, and its pdf is

p(ti|xi−1,ωxi−1xi) =

{
σtTr(xi−1,xi) if xi is in a medium
Tr(xi−1,xi) if xi is on a surface.

(4.8)

With this pdf, the density of sampled points along the ray is proportional to the density of particle
interactions with themedium. Note that if the ray does not pierce anymedia, then Tr(xi−1,xi) = 1, and
thus the closest surface intersection is chosen deterministically with probability 1. e full conditional
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pdf of xi is

p(xi|ωxi−2xi−1 ,xi−1,ωxi−1xi) =

p(ωxi−1xi |xi−1,ωxi−2xi−1)p(ti|xi−1,ωxi−1xi)V (xi−1,xi)
D(xi,ωxi−1xi)

∥xi−1−xi∥2 , (4.9)

where the pdf of the ray direction ωxi−1xi , given by emission or scattering sampling (described below),
depends on the incoming direction ωxi−2xi−1 at vertex xi−1, unless xi−1 ≡ x0 is on a light source. Note
that this procedure implicitly importance samples the visibility term, since the sampled vertex xi is
always visible from xi−1. e last term in the above equation converts the pdf of xi to the volume/area
measure [142, Sec. 8.2.2.2] (see also the relation in Equation 3.9).

Finding the closest surface point along a ray involves testing all objects in the scene for an intersection.
A vast body of research has been devoted to accelerating this computationally intensive ray tracing
operation. We refer the interested reader to recent literature for surveys on this topic [45, 109, 110, 147].

Scattering
Given a path vertex xi with an incident direction ωxi−1xi , a random direction ωxixi+1 from xi toward the
next path vertex xi+1 is sampled with a pdf that should be ideally proportional to the product of the
scattering and foreshortening terms at xi:

p(ωxixi+1 |xi,ωxi−1xi)∝ ρ(xi,ωxi−1xi ,ωxixi+1)D(xi,ωxixi+1), (4.10)

which were defined in Equations 3.33 and 3.35 respectively. With such a pdf, the density of sampled
directions is proportional to the directional density of particles scattered off the point of collision xi.

θ x ix
i+
1

nxi

θxixi+1
xi xi

Figure 4.3: Scattering direction
sampling.

When the scattering termρ at xi is constant, the pdf ofωxixi+1 need
only be proportional to the foreshortening term D. is corre-
sponds to the case where xi is on a diffuse surface or in an isotrop-
ically scattering medium. Simple analytic sampling routines exist
for the resulting cosine-weighted hemisphere and uniform sphere
distributions, respectively [28].

For the Henyey-Greenstein medium scattering distribution, a
closed-form direction sampling routine for the deflection angle exists (see Figure 4.3 le):

cosθxixi+1 =
1
2g

(
1+g2−

(
1−g2

1−g+2gξ

)2
)
. (4.11)

Analytic importance sampling routines also exist for simple surface scattering distributions (BSDFs)[109,
Sec. 14.5]. Unfortunately, more general BSDFs cannot be exactly importance sampled, most notably
microfacet models that are expressed as products of non-trivial terms [16]. Moreover, sampling the
product with the foreshortening (i.e. cosine) term is generally difficult even with simple BSDFs. ere-
fore, random walks in most typical scenes are not strictly analog in practice.

One special case are perfectly specular BSDFs, which can be easily sampled as they only scatter light in
a single, well-defined direction with probability one [109, Sec. 8.2]. If a specular direction is sampled
at vertex xi, the throughput Ci+1 at vertex xi+1 is computed by simply multiplying Ci by the specular
BSDF albedo (which for a perfect mirror is one) and the transmittance Tr(xi,xi+1).
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Termination
In order to maintain a finite computation time, every random walk must eventually terminate. is
trivially happens upon interaction with a non-scattering surface or medium, or when a ray escapes the
scene. Otherwise, the walk can be deterministically terminated aer a predefined number of scatter-
ing events. is however may introduce bias in the final estimator since some longer light transport
paths may never be sampled. Furthermore, this approach can be inefficient as it can waste a lot of
computational effort on sampling paths that end up having very small measurement contributions.

To address these issues, Arvo and Kirk [2] proposed to stochastically terminate random walks using
Russian roulette (Sec. 2.5.3). First, a continuation probability P cont

i = αi is defined at each vertex xi,
whereαi is the surface (Eq. 3.16) ormedium (Eq. 3.18) scattering albedo. A canonical random number
ξ ∈ [0;1) is then drawn and the walk is continued if ξ < P cont

i , multiplying the pdf of the next path
vertex xi+1 by P cont

i . Otherwise the walk is terminated, with probability P term
i = 1−P cont

i . is ter-
mination mechanism makes the expected length of a random walk the same as the average length of a
path traveled by a real-world particle before absorption, which ensures that the walk remains analog.

4.2.2 Unidirectional sampling

Having sampled a path z of length kwith a randomwalk from the eye, we can readily obtain an unbiased
primary pixel estimator for this unidirectional sampling (US) technique:

Î US(z) =
f (z)
p(z)

=
fk(z)ρ(zk)

pk(z)P term
k

=
Ck(z)ρ(zk)

P term
k

. (4.12)

Evaluating this estimator only requires the additional evaluation of the scattering term at the last path
vertex zk. A more efficient approach is to evaluate the emission at every path vertex:

Î US(z) =
k

∑
i=1

Ci(z)ρ(zi). (4.13)

is approach effectively constructs a separate primary estimator for the integral over every path length
i and sums themup all. Note that the above sum generally runs to infinity, but for any randomly chosen
path length k all estimates i > k are zero due to the Russian roulette termination.

e resulting algorithm, illustrated in Figure 4.4a, is known as unidirectional path tracing. Figure 4.6a
shows an image rendered using the estimator in Equation 4.13. Even though this simple unbiased
method can sample all lighting effects in the scene, it suffers from high variance when the light source
is small. Since the emission term at the last path vertex is not importance sampled, the estimator has
a non-zero value only when the random walk hits a light source, which oen occurs with a very low
probability. e adjoint method, which traces paths from the light sources, can be even less efficient,
since the eye lens is usually much smaller than the lights, and randomly hitting it has a probability
close to zero (and equal to zero when a pinhole camera with an infinitesimally small aperture is used).

4.2.3 Vertex connection

In order to obtain a lower-variance pixel estimator when both the light source and the eye lens have
small areas, it is crucial to importance sample both the radiance and importance emissions. is can
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light subpath vertex
eye subpath vertex

a) Unidirectional (eye tracing)
(0, k +1)

b) Next event (eye tracing)
(1, k )

VPL

c) Next event (light tracing)
( k, 1)

d) Many-light rendering
(k – 1, 2)

e) Bidirectional path tracing
(s, t)

Figure 4.4: Schematic illustration of the path sampling techniques employed by various methods. Bidi-
rectional path tracing combines a wide variety of techniques via multiple importance sampling (MIS).

be achieved by tracing independent random walks from both ends and then connecting the resulting
subpaths to complete a full path. By varying the lengths of the light and eye subpaths many different
light transport estimators can be constructed.

Assume we have traced a light subpath y with s vertices and an eye subpath z with t vertices. We
can connect their endpoints, ys−1 and zt−1, to obtain a full path xs,t = y0 . . .ys−1zt−1 . . .z0 of length
k = s+ t − 1. We follow Veach [142] and denote this vertex connection path sampling technique by
(s, t) and illustrate it in Figure 4.5. Its corresponding primary pixel estimator reads

Î VCs,t (xs,t) =
f (xs,t)

ps,t(xs,t)
=

fs−1(y)Cs−1,t−1(y,z) ft−1(z)
ps−1(y)pt−1(z)

=Cs−1(y)Cs−1,t−1(y,z)Ct−1(z),

(4.14a)

(4.14b)

where the connection throughput Cu,v(y,z) is defined as

Cu,v(y,z) = ρ(yu)Tr(yu,zv)V (yu,zv)G(yu,zv)ρ(zv). (4.15)

z0

zt−1 ys−1

y0
. . .. . .

Figure 4.5: Vertex connection.

Since the subpaths y and z are sampled independently, the pdf
of the full path is simply the product of the subpath pdfs:

ps,t(x) = ps−1(y)pt−1(z). (4.16)

As a consequence, this technique does not importance sample
any of the terms in the connection throughputCs−1,t−1(y,z).
Furthermore, when the BSDF at ys−1 or zt−1 is a delta dis-
tribution, the connection throughput, and thus the whole estimator, is zero. Vertex connection can
therefore only be used to connect two non-specular vertices, i.e. to construct DD path segments.

Finally, it is worth noting that this so-called “connection” is only conceptual and also deterministic –
the full path is constructed by simply concatenating the vertex tuples of the light and eye subpaths and
the connection throughput is evaluated along the straight line, or edge, connecting their endpoints.
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a) Unidirectional (eye tracing)

d) Instant radiosity e) Instant radiosity (clamped) f) Bidirectional path tracing

b) Unidirectional + next event c) Next event (light tracing)

Figure 4.6: A comparison of different rendering methods with 40 paths per pixel. a) Unidirectional
sampling performs poorly on this scene, as it relies on randomly hitting the small light source. b) Adding
next event estimation significantly improves efficiency, but caustic paths are still sampled unidirectionally.
c) Light tracing is much more efficient for caustics, however it cannot render perfectly specular materials
since specular path vertices cannot be connected to the eye. d) By correlating the paths constructed through
different image pixels, instant radiosity produces a smooth image, which however lacks caustics and suffers
from singularities at geometric corners. e) Clamping the virtual point light (VPL) contributions removes
the singularities at the cost of darkening the illumination around corners. f) Bidirectional path tracing is
much more robust thanks to the multiple importance sampling (MIS) combination of many techniques;
however it still relies on unidirectional sampling to render caustics seen through specular reflection or
refraction. Note that all images (except for clamped instant radiosity) have the same average brightness,
but in some of them the energy is concentrated in a small number of very bright pixels.
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Next event estimation

With the (s, t) vertex connection technique notation, unidirectional sampling from a light source and
from the eye correspond to the special vertex connection cases (k+ 1,0) and (0,k+ 1), respectively,
where the eye and light subpaths have zero vertices. Another special case of vertex connection are
the (k,1) and (1,k) techniques, corresponding to eye and light subpaths with one vertex, respectively.
ese techniques are oen referred to as next event estimation. e unidirectional path sampling
method from Section 4.2.2 can be significantly improved by creating a connection between every path
vertex and a randomly sampled vertex on a light source (or on the eye lens, respectively). Next event
estimation was first used in graphics by Kajiya [66] who traced paths from the eye. Most of today’s
production rendering engines are based on unidirectional path sampling from the eye, combining the
(0,k+1) and (1,k) techniques via multiple importance sampling (MIS).

e next event estimation techniques are illustrated in Figure 4.4b and Figure 4.4c. When the light
source is small, the (1,k) techniques sample most paths with much higher probability than the unidi-
rectional (0,k+ 1) techniques. e improved efficiency can be seen in Figure 4.6b, where the image
has been rendered using an MIS combination of unidirectional sampling and next event estimation.
Unfortunately, that image still suffers from noise due to the inefficient handling of LS(S|D)∗E paths
which cannot be sampled by the (1,k) techniques. ese include caustic paths and are sampled unidi-
rectionally, oen with very low probability.

Figure 4.6c shows an image rendered with an adjoint next event estimation method that samples paths
from the light sources using (k,1) techniques. e algorithm, called light tracing and proposed by
Dutré et al. [29], can sample some caustic paths (L(S|D)∗SDE) more efficiently. Unfortunately, (k,1)
vertex connections cannot render specular objects directly seen from the eye (which correspond to
L(S|D)∗SE paths).

In the following sections we review some more advanced global illumination rendering methods that
make use of the unidirectional sampling and vertex connection techniques we described above.

4.3 Many-light rendering

An interesting class of bidirectional light transport simulation methods, called many-light methods,
was pioneered by Keller’s instant radiosity algorithm [73]. Instant radiosity runs in two stages. In
the first stage, a number of subpaths are sampled from the light sources and stored. In the second,
final rendering stage, a secondary estimator is constructed for each pixel by tracing an eye subpath
and connecting its first non-specular vertex to the vertices of all light subpaths. is is illustrated in
Figure 4.4d. e light subpath vertices can be viewed as virtual point lights (VPLs) that “illuminate” the
objects seen from the eye. e first stage distributes these VPLs in the scene, which effectively reduces
the global illumination problem to the problem of computing direct illumination from many point
lights in the second stage. e conceptual simplicity and the ease of implementation of this method
(also on graphics hardware) have facilitated its adoption in both interactive and offline applications.
Below we formalize instant radiosity’s pixel estimator and discuss the limitations of this approach.
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4.3.1 The many-light pixel estimator

We now express many-light rendering asMonte Carlo estimation of the path integral (Eq. 3.27). Given
an eye subpath z = z0 . . .zt−1 with t vertices, only the last of which is non-specular (i.e. the subpath
terminates at the first non-specular surface), a many-light method evaluates the secondary estimator

Î ML =
1
N

N

∑
i=1

si−1

∑
j=0

Î VCj,t (yi,0 . . .yi, jzt−1 . . .z0). (4.17)

is estimator averages the primary vertex connection estimators (Eq. 4.14) constructed by connecting
the eye subpath vertex zt−1 to every vertex yi, j of N light subpaths yi = yi,0 . . .yi,si−1 with si vertices
each. In the absence of visible specular surfaces, the eye subpath has t = 2 vertices.

We can merge the two sums in Equation 4.17 to rewrite the pixel estimator in a more common many-
light form which considers each light subpath vertex as a (virtual) light source:

Î ML =
M

∑
k=1

1
N

Î VCjk,t (yik,0 . . .yik, jk zt−1 . . .z0)

=
M

∑
k=1

1
N

C jk(yik)︸ ︷︷ ︸
VPL energy

C jk,t−1(yik ,z)︸ ︷︷ ︸
connection
throughput

Ct−1(z)︸ ︷︷ ︸
eye subpath
importance

=
M

∑
k=1

h(x,vk),

(4.18a)

(4.18b)

which computes the contributions h(vk,x) of M = ∑N
i=1 si virtual point lights (VPLs). On the right-

hand sidewe have used a compact notation to denote theVPL vertices by vk≡ yik, jk and the eye subpath
vertex by x ≡ zt−1. Note that in the two equations above, the eye subpath z is different for each pixel
estimator Î ML, whereas the set of light subpaths {yi}N

i=1 is the same for all pixel estimators.

4.3.2 Discussion

A consequence of correlated path sampling, e.g. reusing the same set of VPLs for all pixels, is that
variance manifests itself as structured low-frequency noise in the image, which can sometimes be less
objectionable than the high-frequency noise produced by uncorrelated sampling. Nevertheless, many
VPLsmay need to be sampled in order to reduce this noise, which can significantly increase the compu-
tational cost of the second (rendering) stage. In Chapters 5 and 6 we will present techniques to reduce
this cost by only evaluating the contributions of a few carefully selected VPLs.

d vk
x

. . .

Figure 4.7: e vertex con-
nection estimator diverges
around corners.

One shortcoming of exclusively using vertex connections inmany-light
rendering is related to the fact that the geometry term in the path con-
tribution diverges as the distance between two connected subpath ver-
tices approaches zero (Eq. 3.34). Since the geometry term in the con-
nection throughput is not importance sampled, the variance of the pri-
mary vertex connection estimator explodes to infinity when the sub-
path endpoints are very close to each other (Fig. 4.7). e visual effect
is illustrated in Figure 4.6d, where geometric corners are plagued by
high-intensity spots in the rendered image. e common approach to
remedy this problem is to clamp the distance d = ∥x−vk∥ between the
two vertices to some minimum value, d∗ = max(dmin,d), and evaluate
the geometry term with d∗. As shown in Figure 4.6e, this clamping pro-
duces a smooth image but introduces bias which translates to slightly underestimated illumination



Chapter 4: Monte Carlo solutions for the path integral 45

around geometric corners. Instead of clamping, Kollig and Keller [78] completely discard short con-
nections and then continue the eye subpath to “gather” the unaccounted for close-range illumination.
ismethod effectively combines different vertex connection techniques with varying subpath lengths,
making sure that each full path is sampled by a technique that has a long enough connection segment.

To render specular objects usingmany-light methods, every subpath from the eye is extended until the
first diffuse object is encountered. However, because full paths are always constructed via connections,
only the L(S|D)∗DDS∗E subset of the full light transport in the scene can be captured. As a result,
many-light methods cannot render caustics from specular objects, as seen in Figure 4.6. And while
caustics from glossy objects can technically be captured by thesemethods, they are generally inefficient
for such effects. is is because the pixel estimator suffers from high variance when high-frequency
BSDFs are involved in the vertex connection throughput which is not importance sampled (Eq. 4.15).

4.4 Bidirectional path tracing

(s= 1, t = 3)

(s= 0, t = 4)

(s= 2, t = 2)

(s= 3, t = 1)
z1

y0

y1
y0

z1z2

x0
x1 x2

x3

y0
y1 y2

z0
z1z2

z0

z0

z0

z3

Figure 4.8: A full path constructed using dif-
ferent subpath connection techniques.

Path tracing and many-light methods sample every
light transport path using one, pre-determined ver-
tex connection technique. However, each different
(s, t) technique can efficiently sample only a certain
kind of paths and no single technique importance
samples all terms in the measurement contribution
function (Eq. 3.31). is makes these methods very
sensitive to the scene configuration as the techniques
they employ can only capture a subset of all lighting
effects efficiently. at is, these methods are not ro-
bust to variations in geometry and materials.

Most light transport paths can be sampled by more
than one vertex connection technique. e idea be-
hind bidirectional path tracing (BPT) is to employ all
possible techniques for every path [85, 143]. For each pixel, BPT starts by sampling two independent
subpaths, one from a light source and one from the eye. Aer that, a number of full paths are con-
structed by connecting every pair of light and eye subpath vertices, as illustrated in Figure 4.4e. With
this scheme, any full path of length k can be sampled in up to k + 2 ways, each corresponding to a
different (s, t = k− s) vertex connection technique with a different pdf. e number of possible tech-
niques is smaller when the path contains specular vertices, since such vertices cannot be involved in
connections. Figure 4.8 shows all possible techniques3 for k = 3.

Since different techniques are efficient for different kinds of paths, Veach and Guibas [144] combine
their primary estimators via multiple importance sampling (MIS), in order to preserve the qualities of
each:

Î BPT = ∑
s≥0

∑
t≥0

ws,t(xs,t) Î VCs,t (xs,t). (4.19)

Recall that the power heuristic (Eq. 2.47) aims to promote efficient techniques and demote inefficient
ones by assigning weights that are inversely proportional to their corresponding path pdfs. In BPT

3We omit the (k+1,0) technique, as it is rarely useful in practice due to the relatively small size of the eye sensors.
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this helps avoid infinite variance due to geometric singularities, since techniques that perform connec-
tions along short path segments have relatively low pdfs and are automatically down-weighted. e
resulting combined estimator thus handles a wide range of lighting effects much more robustly than
each individual technique alone, as it avoids potential high variance induced by low path sampling
pdfs. is can be clearly seen in Figure 4.6f, where the BPT image has much lower noise levels than
any other image.

di�use re�ection
mirror re�ection
di�use light

Figure 4.9: In BPT,
specular-diffuse-specular
(SDS) paths can be sampled
only unidirectionally.

e use of MIS is the key to the robustness of BPT, as it can automati-
cally find a good mixture of the available sampling techniques for each
individual light transport path. However, MIS cannot help when none
of the combined techniques can efficiently sample a certain kind of
paths. A prominent example are L(SD)+SE paths, which are not sam-
pleable by any (s > 0, t > 0) vertex connection technique, because they
do not contain DD segments where a vertex connection could be estab-
lished. Such specular-diffuse-specular (SDS) light interactions corre-
spond to caustics seen through a reflection or refraction. In BPT, these
paths can only be found by (0,k+1) unidirectional sampling (Fig. 4.9)
and with a very low probability when the light source is small. e re-
sulting noise can be seen in Figure 4.6f. Kollig and Keller [77] call this
the problem of insufficient techniques. In Chapter 7 we will address this
problem by augmenting BPT with path sampling techniques from photon mapping (discussed below
in Section 4.6) which can be much more efficient for SDS paths.

4.5 Specialized techniques for participating media

So far we have focused most of our discussion on surface rendering. However, the light transport
problem is generally more difficult in the presence of participating media, since light can scatter at any
point along a ray in a medium and not only at the closest surface (Eq. 3.25). All methods described in
the three sections above can, in fact, handle volumetric scattering by sampling path vertices in media
during the random walks. As we described in Section 4.2.1, the propagation distance along a ray is
typically sampled with a pdf proportional to transmittance. When connecting two subpaths, the vertex
connection estimator also evaluates the transmittance along the connection segment (Eq. 4.15), which
in the absence of media is equal to one.

Unfortunately, in participating media the vertex connection estimator is even more prone to high vari-
ance in the geometry term. is is because the endpoints of two subpaths can end up arbitrarily close
to each other anywhere in space, and not only around surface concavities. Moreover, since the scatter-
ing term at neither endpoint is importance sampled, the variance is further increased in the common
case of anisotropic volumetric scattering.

e root of the above problems lies the fact that the light and eye subpaths are sampled completely
independently and their endpoints are connected deterministically. us, there is no “freedom” le
for the estimator to importance sample the connection throughput. Below we describe two recently
proposed techniques that take advantage of the extra dimension in media and perform connections
by not only considering the vertices of the subpaths but also their entire (semi-infinite) segments. is
provides the necessary freedom to importance sample some terms in the connection throughput. In
Chapter 9 we will revisit these techniques, improve upon them, and integrate them as general subpath
connection techniques into the methods described in the previous sections.



Chapter 4: Monte Carlo solutions for the path integral 47

ωx0x1

ωx3x2x3 x2

x1x0

ωx2x1x2 x1

a) Equi-angular sampling b) Virtual ray lights (VRL)

VRL

connection vertex

tx2x1

tx0x1

tx3x2

θx0

Figure 4.10: Illustration of the equi-angular and virtual ray light sampling techniques.

4.5.1 Equi-angular sampling

Kulla and Fajardo [80] considered the problem of rendering single scattering in participating media
by sampling a length-2 path x0x1x2 given a vertex x0 on a light source and an eye ray (x2,ωx2x1) (see
Figure 4.10a). ey observed that while the transmittance along the eye ray is bounded in the interval
[0;1], the geometry term between the vertices x0 and x1 can have arbitrarily high variation. erefore,
instead of sampling the propagation distance tx2x1 proportionally to transmittance (as traditionally
done in a random walk from the eye), Kulla and Fajardo use a pdf proportional to G(x0,x1), i.e. the
inverse squared distance between x0 and x1:

p(tx2x1 |x0,x2,ωx2x1)∝ G(x0,x1) =
1

∥x0−x1∥2 . (4.20)

Sampling from this pdf results in a uniform distribution of angles θ between the segment x0x1 and
the eye ray direction ωx2x1 . Hence, Kulla and Fajardo called the technique equi-angular sampling. is
technique has in fact appeared in the neutron transport literature a long time ago for solving the adjoint
problem of estimating the incident flux at a point detector located in a medium [67, 115].

e equi-angular distribution can result in a lower-variance estimator than transmittance sampling
when the eye ray passes close to the light source, as can be seen in Figure 4.11b. However, this sampling
distribution can be less efficient in dense or heterogeneous media or when the distance between the
eye ray and the light source is large, in which case G(x0,x1) has relatively low variation. Transmittance
sampling may still be preferred in such cases, so Kulla and Fajardo combine the two techniques via
multiple importance sampling (MIS).

4.5.2 Virtual ray lights

To ameliorate the geometric singularities that plague virtual point light methods, Novák et al. [96]
proposed virtual ray lights – a specialized many-light approach for rendering multiple scattering in
media. A virtual ray light (VRL) is a semi-infinite segment on a light subpath sampled via a traditional
random walk. e energy transport between a VRL and an eye ray is a double integral along both
rays and can be estimated via Monte Carlo integration. e problem is illustrated in Figure 4.10b for
the case of double scattering, where the task is to sample vertices x1 and x2 along the rays (x0,ωx0x1)
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Isotropic single scattering Anisotropic double scattering (g = 0.9)

a) Transmittance
 sampling

b) Equi-angular
 sampling

c) Virtual point lights
(VPL)

d) Virtual ray lights
(VRL)

Figure 4.11: A comparison of equi-angular sampling and VRLs to traditional vertex connection based
methods on a scene with a homogeneous medium and an isotropic point light source. e le two images
were rendered with 4 paths per pixel. e right two images were rendered with a fixed set of 24 virtual
point and ray lights, respectively, and 16 eye rays per pixel. Note that the two le and the two right images
have the same expected values, respectively. e difference in the appearance of the two right images is
due to the different types of sampling correlation in the VPL and VRL methods. e anisotropic emission
shape of the virtual point lights can be seen in in the center right image, whereas each line in right-most
image corresponds to one virtual ray light.

and (x3,ωx3x2) respectively. Novák et al. sample the corresponding propagation distances tx0x1 and
tx3x2 from a joint distribution that is approximately proportional to the product of the geometry and
scattering terms in the connection throughput between x1 and x2:

p(tx0x1 , tx3x2 |x0,ωx0x1 ,x3,ωx3x2) ∝∼ G(x1,x2)ρ(x1)ρ(x2) =
ρ(x1)ρ(x2)

∥x1−x2∥2 . (4.21)

e approximate proportionality stems from the various simplifications made by Novák et al. [96]
in order to make sampling from this joint distribution practical. e distance tx0x1 along the VRL is
sampled first, from an analytical marginal distribution that assumes isotropic scattering in themedium
(i.e. disregards the scattering terms above) and that the eye ray is a fully infinite line. e distance
tx3x2 along the eye ray is then sampled from a distribution conditioned on vertex x1. For the case of
isotropic scattering the pdf is the same as the equi-angular pdf (Eq. 9.14) – vertex x1 in Figure 4.10b
corresponds to x0 Figure 4.10a. When the medium phase function is anisotropic, the conditional
pdf is not constant in the angular domain anymore, and Novák et al. tabulate the product of the two
scattering terms ρ(x1)ρ(x2) for a number of values for the angle θ. In Chapter 9, we will improve upon
these approximations and will generalize the VRL method into a full bidirectional path tracer.

Figure 4.11 compares the vertex connection based VPL method to the VRL method. e joint VRL
distribution (Eq. 4.21) achieves good importance sampling when the distance between two rays is
relatively small or when the medium phase function is highly anisotropic. However, the technique
does not importance sample any of the transmittance terms along the length-3 subpath involved in the
connection. Depending on the geometry configuration andmedia properties, transmittance sampling
of either propagation distances may lead to a lower-variance estimator, so Novák et al. [96] combine
the various possible sampling combinations via MIS.
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4.6 Photon density estimation

A popular class of bidirectional rendering algorithms was pioneered by Arvo [1] who was the first to
propose tracing particle trajectories from the light sources. He stored virtual photons on the scene
surfaces and then estimated the irradiance at points seen from the eye by computing the density of the
deposited energy per unit area. ismethod received a lot of attention due to its ability to efficiently ren-
der caustics and was consequently refined and formalized as photon density estimation [126, 149]. Just
like many-light methods, photon density estimation methods sample subpaths from the light sources
and treat their vertices as lighting samples. However, instead using these samples to approximate the
exitant illumination in the scene (i.e. by treating them as virtual light sources), density estimationmeth-
ods view the samples as an approximation of the incident radiance distribution on the scene surfaces.
In the remainder of this section, we present the most popular photon density estimation algorithm to-
day – photon mapping, along with the recent progressive formulations of its pixel estimator that have
made this algorithm consistent and even more practical.

4.6.1 Photon mapping radiance estimator

Photon mapping is a two-stage rendering algorithm proposed by Jensen [62]. In the first stage, N
subpaths are traced from the light sources and their vertices (photons) are organized into a spatial data
structure – a kd-tree or a uniform grid, called a photon map. In the second stage the photon map is
used to estimate the scattered outgoing radiance (Eq. 3.24) at surface points z sampled from the eye:

L̂s(z→ωo) =
1
N ∑

y∈Pr

Kr(y,z)ρs(z,ωy,ωo)Ciy(y), (4.22)

where Pr is the set of photons y in the r-neighborhood around z, which can be efficiently found via a
range search in the photonmap. Note that the BSDF ρs is evaluated at z but with the incident direction
at ωy used as the incoming direction. Ciy(y) is the sampling throughput of the light subpath y at the
photon vertex y (Eq. 4.6). e weighting kernel Kr must integrate to one over the surface area in the r-
neighborhood around z. An estimator for the measurement equation (Eq. 3.21) is obtained by tracing
an eye path through the pixel and evaluating the above radiance estimator at the first non-specular
vertex, as done in many-light methods. e algorithm is schematically illustrated in Figure 4.12a.

e photon mapping estimator is biased as it computes the outgoing radiance at point via averaging
the incident illumination in its vicinity. e search radius r is a parameter that trades off the variance
and the bias of the estimator. Jensen [62] sets r to the distance between z and its nth nearest photon;
alternatively it can be set manually or made proportional to the area of the pixel footprint4 at z.

Jensen’s [62] original derivation of the photon mapping estimator was based on intuition and math-
ematical manipulations; more rigorous derivations have been proposed since then [142, 109, 31, 58].
While the behavior of this estimator in different lighting configurations is relatively well understood
on an intuitive level, in-depth efficiency analyses and comparisons to the pure Monte Carlo methods
from the previous sections have not been available. In Chapter 7 we will express this estimator in the
path integral framework, which will provide new insights into the efficiency of the photon mapping
method.

4e pixel footprint is the surface region around z that projects to one pixel on the screen [53].
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light subpath vertex (photon)
eye subpath vertex (query point)

b) Progressive photon mappinga) Photon density estimation c) Bidirectional path tracing

Figure 4.12: An illustration of the photon mapping algorithm (a) and a rendering comparison between
progressive photon mapping (b) and bidirectional path tracing (c) on the scene from Figure 4.6.

4.6.2 Progressive photon mapping

While the photon tracing stage in photon mapping provides an unbiased estimate of the incident ra-
diance distribution in the scene, the final outgoing radiance estimator (Eq. 4.22) introduces bias by
blurring this distribution. is estimator can be made consistent by shrinking the search radius to
zero as the number of sampled photons approaches infinity [63]. is guarantees that both its vari-
ance and the bias vanish in the limit. Unfortunately, this also means that convergence to the correct
solution comes at the cost of a photon map with an infinitely large memory footprint.

Recently, Hachisuka et al. [41] showed that consistency can in fact be achievedwithout the need to store
infinitely many photons in a single photon map. eir progressive photon mapping (PPM) algorithm
goes about this by storing at every query point z a local radius and cumulative photon contributions
which are updated in successive independent photon tracing iterations. At each iteration, a newphoton
map is built, the contributions of the newly sampled photons are accumulated to every query point, and
the photon map is finally discarded. Hachisuka et al. [41] showed that by shrinking the query radii at
an appropriately chosen rate aer every iteration, the radiance estimates converge to the correct values
while keeping the memory footprint bounded. Hachisuka and Jensen [38] subsequently proposed
stochastic progressive photon mapping (SPPM) to store the cumulative statistics with each pixel rather
than at a fixed set of query points. While the PPM formulation requires the query points z to remain
fixed over the course of rendering, SPPM allows for tracing a new set of eye subpaths at each iteration
which enables consistent estimation of the final pixel values.

Probabilistic formulation

More recently, Knaus and Zwicker [76] presented an (S)PPM formulation that avoidsmaintaining pho-
ton statistics altogether. eir practical algorithm is a simple extension of traditional photon mapping
that averages independently rendered images using progressively shrunk query radii. eir consistent
pixel estimator has the form

Î PPMN =
1
N

N

∑
i=1

Î PMri
. (4.23)
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Here, Î PMri
is a primary estimator for themeasurement equation that uses the photonmapping radiance

estimator (Eq. 4.22) with a query radius ri computed as

ri = r1

√√√√(i−1

∏
k=1

k+α
k

)
1
i
, (4.24)

where r1 is the radius at the first iteration and α ∈ (0;1) is a user parameter that controls the radius
reduction rate for the subsequent iterations. In Section 7.4.1 we will derive a simpler radius reduction
formula that is asymptotically equivalent to the one above.

Knaus and Zwicker [76] proved that the secondary estimator in Equation 4.23 converges to the true
pixel value under the assumption that the photons in all progressive iterations are sampled from the
same probability distribution. eir proof is thus incompatible with methods that (adaptively) change
the photon sampling distribution, such as the Markov chain approach of Hachisuka and Jensen [39],
whose consistency requires additional proofs.

Figure 4.12b shows an image produced by the (S)PPM variant of Knaus and Zwicker [76] next to the
bidirectional path tracing (BPT) result from Figure 4.6f. Both images have been rendered progressively
by recursively evaluating their corresponding secondary pixel estimators (Eq. 2.20) and use roughly
the same number of light subpaths. We see that PPM captures the reflected caustics (produced by
SDS paths) in this scene much more efficiently than BPT which on the other hand delivers a smoother
result almost everywhere else. In Chapter 7, our formulation of the primary photon mapping pixel
estimator Î PMri

as a path integral estimator of the form in Equation 4.1 will allow us to combine these
two rendering methods via multiple importance sampling into a consistent algorithm that preserves
their complementary advantages.

Asymptotic performance

e secondary pixel estimator in Equation 4.23 is asymptotically equivalent to that of SPPM [38].
Knaus and Zwicker [76] derived the asymptotic behavior of both the primary and the secondary esti-
mators:

Var
[
Î PMri

]
= O(i1−α) Bias

[
Î PMri

]
= O(iα−1)

Var
[
Î PPMN

]
= O(N−α) Bias

[
Î PPMN

]
= O(N α−1).

(4.25a)
(4.25b)

e MSE of the secondary estimator, which measures its total expected error, is thus:

MSE
[
Î PPMN

]
= Var

[
Î PPMN

]
+Bias2 [Î PPMN

]
= O(N−α)+O(N 2(α−1)), (4.26)

which has a maximum rate of O(N−2/3), reached for α = 2/3. is means that (S)PPM converges to
the correct solution asymptotically slower than the unbiased vertex connection estimators from Sec-
tion 4.2, and thus slower than every unbiased rendering algorithm we have discussed so far, including
BPT. However, as seen in Figure 4.12, PPM can oen produce a lower-error estimate with a finite
number of samples, especially in regions with SDS paths. e combined rendering algorithm that we
describe in Chapter 7 inherits the higher error convergence rate of BPT while preserving the efficiency
of PPM for SDS paths.
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4.7 Other methods

A large variety of Monte Carlo methods have been proposed for solving the light transport problem,
and our discussions throughout this thesis are focused on those that are most closely related to the
developments presented in the following chapters. In this section we review some other prior work
related to our contributions.

4.7.1 Incident illumination importance sampling

As we discussed in Section 2.5.4, the ideal sampling density for Monte Carlo integration is the one
exactly proportional to the integrand. And while it is practically infeasible to sample from such a high-
dimensional distribution to solve the full light transport problem, it has been shown that it is possible to
construct approximate distributions that achieve close proportionality for certain lower-dimensional
sub-problems.

e most sophisticated unbiased importance sampling methods available construct an explicit repre-
sentation of a pdf for sampling the incident illumination at a given surface point. Ideally, this pdf would
be the product of all terms under the scattering integral (Eq. 3.24). In practice, not all of these terms
are known or cheap to compute, so the pdf typically includes only some of them. In particular, most
methods aim to sample from the product of the BSDF and the unoccluded incident radiance, while the
visibility term is usually omitted as it is the most expensive to evaluate. emost common approach is
to build a compact tabulation of this product for direct illumination [12, 14, 10] as well as for indirect
illumination from virtual point lights [154]. Rousselle et al. [118] also include a conservative visibility
term. e photonmap has also been used for importance sampling directions in randomwalks, where
the distribution is derived from the photons cached at nearby locations [61, 52, 108, 132].

Some methods use importance resampling to estimate the illumination from an environment map at a
point [5, 137]. With this approach, a number of candidate directions are first sampled from the BSDF,
which are then weighted and resampled to obtain a distribution that is approximately proportional to
the product of the BSDF and the environment radiance.

It is also possible to reconstruct an approximation of the ideal distribution during sampling, using the
contributions of the already evaluated samples. is sequential Monte Carlo approach has been used
for sampling the incident illumination at points on surfaces [102] and in participating media [103].

e virtual point light importance caching method that we present in Chapter 6 bares similarity to the
pdf reconstruction approach of Pegoraro et al. [102]. It also makes use of importance resampling to
handle glossy surfacesmore efficiently. In addition, likemost of the aforementionedmethods, our joint
path sampling techniques presented in Chapter 9 aim to importance sample the product of several path
contribution terms, but with the difference that we derive the sampling distributions through analytical
or numerical marginalization instead of caching and reconstruction.

4.7.2 Exploiting coherence

In most typical scenes the incident illumination on surfaces and in media oen varies piece-wise
smoothly. In such cases, the scattering integrals at nearby locations in space are strongly correlated,
as are the measurement integrals of neighboring pixels in the image. Many approaches have been
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proposed to exploit these correlations by reusing Monte Carlo samples for the estimation of multiple
illumination integrals, thereby amortizing the sampling effort and improving rendering efficiency.

Irradiance caching [157, 156] computes accurate indirect irradiance estimates at a set of adaptively cho-
sen locations in the scene and interpolates these estimates at points outside this set. By considering
a larger number of less accurate estimates, Kontkanen et al. [79] extended this approach to adaptive
irradiance filtering over surfaces. ese methods can significantly improve efficiency over brute-force
sampling, but are limited to diffuse inter-reflections as the interpolation used does not account for
directionality in the incident illumination. Radiance caching [81, 34, 50] addresses this shortcoming
by storing a compact incident radiance representation at each cache location that captures this direc-
tionality. However, it still assumes that the illumination varies smoothly everywhere except around
geometric discontinuities, which is not the case in the presence of small sources of strong indirect il-
lumination. Křivánek et al. [82] ameliorated this problem by improving the interpolation strategies
and the schemes for adaptive placement of illumination records in (ir)radiance caching. Nevertheless,
thesemethods introduce bias to the solution which is impossible to eliminate. e importance caching
method that we describe in Chapter 6 is also designed to exploit illumination coherence but in a way
that avoids interpolation bias and is robust to discontinuities.

On top of product importance sampling of BRDF and environment map illumination [10], Clarberg
and Akenine-Möller [11] add a control variate term that includes interpolated visibility. is reduces
noise in occluded regions, but since the sampling distribution remains unchanged, the effect of vari-
ance reduction is limited. e table-driven adaptive importance sampling method of Cline et al. [15]
reduces variance by sharing importance information across neighboring pixels. is approach is how-
ever prone to high variance at discontinuities, which Cline et al. clamp in a biased way.

Illumination can also be interpolated in screen space. Suykens andWillems [135] reconstruct an image
from bidirectional path tracing samples using adaptive density estimation on the image plane. eir
algorithm progressively shrinks the 2D image filter as more samples are accumulated, which bares
similarity to progressive photon mapping. Such screen-space de-noising algorithms have recently re-
ceived renewed interest in research due to their ability to reconstruct a smooth, albeit biased, result
from a very small number of samples. Some approaches operate entirely on screen-space sample in-
formation [125, 119, 120, 89], some rely on auxiliary feature information for detecting discontinu-
ities [19, 94, 121], and some also adaptively distribute samples on the image plane based on the esti-
mated error [119, 120, 89, 121]. Screen-space filtering can be applied on top of almost anyMonte Carlo
rendering method [162], including the ones we present in the following chapters.

4.7.3 Density estimation in participating media

Photon density estimation has also been successfully applied to rendering participating media. Jensen
and Christensen [64] presented a simple extension of the photon mapping estimator (Eq. 4.22) to
compute the outgoing radiance at points in participating media. eir volumetric photon mapping al-
gorithm stores photons in the volumes of the media, which are then gathered around points sampled
along eye rays via ray marching. Knaus and Zwicker [76] later showed that the volumetric radiance
estimator can be easily made consistent using the same progressive query radius reduction scheme
from their progressive photon mapping formulation. Our vertex connection and merging algorithm,
presented in Chapter 7, also benefits from these two straightforward extensions.

Jarosz et al. [58] improved the efficiency of volumetric photon mapping by gathering photons around
entire eye segments, or beams, avoiding the costly ray matching. Sun et al. [134] extended this idea
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to a radiance estimator that considers the entire segments of the light subpaths rather than only their
vertices (i.e. the photons). Concurrently with Sun et al., Jarosz et al. [59] formalized various volumetric
radiance estimators based on photon point and photon beam density estimation in a unified framework.
Jarosz et al. [60] later proposed a progressive photon beam estimator that achieves consistency in the
spirit of the progressive photon mapping formulation of Knaus and Zwicker [76]. ese formulations
inspired the development of the virtual ray light and virtual beam lightmethods of Novák et al. [96, 95].
Building on these ideas, in Chapter 9 we propose novel sampling techniques for constructing light
transport paths in participating media that use both points and segments as sampling primitives.

4.7.4 Markov chain Monte Carlo

e formalization of light transport simulation as a pure integration problem [144] allowed Veach
and Guibas to leverage Metropolis sampling for rendering scenes with complex lighting [145, 142].
eir Metropolis light transport (MLT) algorithm was the first application of Markov chain Monte
Carlo (MCMC) integration to image synthesis. It mutates entire light transport paths in the high-
dimensional path space with a target density approximately proportional to the measurement contri-
bution function (Eq. 3.31). e initial path in a chain is generated by an ordinary Monte Carlo path
sampling technique, such as vertex connection (Sec. 4.2.3). Veach and Guibas proposed a number
of mutation strategies that perturb individual path vertices or regenerate entire subpaths again using
traditional path sampling techniques.

Metropolis sampling can significantly outperform ordinary, uncorrelated Monte Carlo methods when
the energy is primarily concentrated in small isolated (e.g. caustic) regions of the path space, thanks
to its ability to efficiently explore such regions. Having recognized this strength, research effort has
since focused on extending and further improving the MLT algorithm. Pauly et al. [100] generalized
MLT to handle participating media and augmented its mutation arsenal with new strategies. Kele-
men et al. [72] proposed to perform the mutations in the unit hypercube of random numbers that
traditional sampling techniques map to paths in the path space. While the original MLT algorithm of
Veach and Guibas [145] renders an image using a single long chain of paths, Cline et al. [13] showed
that using a large number of short chains lowers the sample correlation and improves stratification,
which is beneficial in scenes with more uniform lighting. More recently, Jakob and Marschner [57]
recognized that light transport paths containing specular vertices lie on submanifolds of the full path
space. ey designed a mutation strategy that “walks” on these submanifolds to explore caustic paths
more efficiently than prior mutation strategies.

Metropolis sampling has also been successfully used to distribute photons and virtual point lights
(VPLs) in regions of importance to the image [33, 124, 39, 9]. Our VPL distributionmethod, described
in the following chapter, relies on ordinary sampling methods to achieve the same goal.

In this thesis we focus on ordinary Monte Carlo path sampling techniques, noting that Markov chain
methods also rely on such techniques for constructing and mutating light transport paths. We there-
fore view MCMC methods as orthogonal to the contributions of this work. Indeed, we expect that
enhancing our techniques through the use of MCMC samplers will bring further efficiency improve-
ments.
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Importance-driven Distribution
of Virtual Point Lights 5
Many rendering applications in industrial design, architectural visualization, and film production re-
quire accurate global illumination simulation in scenes with complex distributions of geometry and
lighting. Monte Carlo integration is currently the best-known method for solving that problem and
many-light rendering, which we introduced in Section 4.3, is one such approach that can handle scenes
with diffuse andmoderately glossymaterials. Many-lightmethods reduce the global illumination prob-
lem to the problem of computing direct illumination from a set of virtual point lights (VPLs). e ef-
ficiency of this approach largely depends on two factors: (1) the quality of the VPL distribution in the
scene, i.e. how relevant the VPL set is to the regions seen from the eye, and (2) the cost of computing
the contributions of all VPLs to every pixel. In this chapter, we address the problem of distributing
a set of VPLs relevant to the chosen viewpoint. In Chapter 6 we will propose a method to efficiently
compute an image from this VPL set.

Keller’s instant radiosity [73] samples VPLs with a density roughly proportional to the flux density in
the scene. As a result, many VPLs are usually concentrated in the areas around the light sources, and
in highly occluded scenes, where light scatters at least a few times before reaching the eye, most of
these VPLs do not contribute any energy to the image. Moreover, VPLs that bring some energy are
sampled with low probability, leading to high variance. Since the VPL distribution stage is typically
much cheaper than the final rendering stage, it is worth spending some extra effort to distribute a set
of VPLs that are relevant to the image.

Importance-driven tracing of light subpaths has been first employed in the context of photon map-
ping. Peter and Pietrek [107] proposed building an “importon” map from the vertices of subpaths
traced from the eye. is map is then used to guide the sampling of photon paths toward regions of
importance to the image. Keller andWald [74] use the importonmap to probabilistically store photons
in the photon map. For many-light rendering, Wald et al. [148] trace paths from the eye and count
the number of times each light source is hit to estimate its importance prior to VPL distribution. Ma-
trix row-column sampling (MRCS) [46] adaptively selects a few important VPLs by first clustering all
sampled VPLs based on their image contributions and then electing a representative one from each
cluster. Bidirectional instant radiosity (BIR) [123] samples VPL locations from both the eye and the
light sources and then resamples them proportionally to their estimated image contributions, keeping
the most relevant ones for the final rendering. Metropolis instant radiosity (MIR) [124] uses Metropo-
lis sampling to generate a set of VPLs that contribute an equal amount of energy to the image. While
MRCS and BIR can find relevant VPLs in highly occluded scenes, their implementation is fairly in-
volved and requires tuning a number of parameters. On the other hand, MIR is more robust to scenes
with difficult visibility and has a small memory footprint. However, it is prone to producing poorly
stratified VPL sets due to inherent correlations in the underlying Metropolis sampler.
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In this chapter, we propose a practical importance-driven VPL distribution algorithm that is a simple
extension to the traditional randomwalk based distribution of Keller [73]. e idea is to stochastically
accept or reject each VPL on-the-fly with a probability proportional to its estimated importance to the
final image. As a result, more VPLs are concentrated in regions that illuminate the visible parts of the
scene, which comes at the cost of a negligible overhead to the overall rendering performance. Unlike
some previous methods, this algorithm is very simple to implement and is well suited to progressive
rendering. We demonstrate its efficiency on scenes with difficult visibility.

5.1 Probabilistic VPL acceptance

e computational cost of the many-light estimator (Eq. 4.18) is proportional to the number of VPLs
distributed in the scene. As illustrated in Figure 5.1a, in highly occluded scenes most of these VPLs
contribute no energy to the image. We can take advantage of this fact and quickly discard VPLs with
low estimated contributions during the VPL distribution stage. In this section we describe how this
can be achieved without introducing bias to the image.

5.1.1 Formal derivation

Ourmethod replaces instant radiosity’s deterministic VPL creation by a stochastic acceptance decision
based on a carefully chosen probability. In the spirit of Keller and Wald [74], we transform the VPL
contribution function h(x,vk) (Eq. 4.18) by introducing a Russian roulette decision with acceptance
probability Pacc(vk) ∈ (0;1]. We start by rewriting the many-light estimator:

Î ML =
M

∑
k=1

h(x,vk) =
M

∑
k=1

h(x,vk)
Pacc(vk)

Pacc(vk)

=
M

∑
k=1

h(x,vk)
1

Pacc(vk)

1∫
0

χ[0;Pacc(vk)](t)dt,

(5.1a)

(5.1b)

where we express Pacc(vk) as an integral over the characteristic function of the interval [0;Pacc(vk)].
One-sample Monte Carlo estimation of this integral gives

1∫
0

χ[0;Pacc(vk)](t)dt ≈ χ[0,Pacc(vk)](ξ) =

{
1 if ξ < Pacc(vk)

0 else,
(5.2)

where ξ ∈ [0,1) is a canonical uniform random variable. Plugging this result back into Equation 5.1,
we arrive at the following modified many-light pixel estimator:

Î IML =
M

∑
k=1

{
h(x,vk)

1
Pacc(vk)

if ξ < Pacc(vk)

0 else.
(5.3)

Note that this modification can in fact only increase the variance of the pixel estimator. Nevertheless,
by choosing an appropriate acceptance probability, VPLs with low contributions can be discarded early
on and not be considered in the final rendering stage, which in turn improves the overall efficiency. We
next describe how to choose the acceptance probability for each VPL.
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view frustum
VPL contribution estimation

a) Traditional VPL sampling b) With importance-driven resampling

importance recordrejected VPLaccepted VPL

Figure 5.1: VPL distribution in a highly occluded scene. a) Traditional sampling produces many VPLs
that do not contribute energy to the image. b) Our importance-driven resampling method concentrates
more VPLs in areas relevant to the visible parts of the scene.

5.1.2 VPL acceptance probability

To be able to efficiently discard VPLs during the distribution stage, as in previous work [148, 46, 123,
124] we make the practical assumption that the contribution of each VPL does not vary much across
different image pixels. Under this assumption, the image variance would be zero if all M VPLs con-
tribute the same amount of luminance Φ/M, where Φ is the total image luminance.

Assumewehave an estimate Φ̂of the final image luminance aswell as an estimate Φ̂k of the contribution
of each VPL candidate vk. We define the acceptance probability for vk as

Pacc(vk) = max
(

min
(

M
Φ̂k

Φ̂
, 1
)
, Pmin

acc

)
, (5.4)

where Pmin
acc > 0 is a parameter. Using this probability, VPLs with estimated contribution higher than

desired are trivially accepted with unmodified contribution (due to Pacc(vk) = 1 in such cases), thus
avoiding excessive variance. In contrast, VPLs with comparatively low contributions are likely to be
rejected. As a result, more VPLs are concentrated in the areas around the visible parts of the scene.

e minimum acceptance probability Pmin
acc in Equation 5.4 can be viewed as a trade-off parameter

between run-time and importance sampling efficiency. If Pmin
acc ≥ 1, the resulting VPL set is identical

to the one created by instant radiosity, as all VPLs are trivially accepted. A value close to zero leads to
more aggressive importance sampling. We now describe how to compute the two luminance estimates
required for the evaluation of Equation 5.4.

VPL contribution estimation
Prior to VPL distribution, we trace a number of subpaths from the eye, in the order of a few hundred,
terminating each one at the first non-specular surface. e endpoints of these subpaths are the equiva-
lent to importons in the photonmapping setting and we call them importance records (see Figure 5.1b).
is is the only storage required by our algorithm. During VPL sampling from the light sources, the
image contribution Φ̂k of each VPL vk is estimated by connecting vk to all importance records. is
last step is equivalent to rendering a random subset of all image pixels using a single VPL.
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Image luminance estimation
e second quantity required by the VPL acceptance probability is the estimate of the total image
luminance Φ̂. In a progressive rendering setup, Φ̂ can be directly obtained from the running image
estimate. For the first rendering iteration, Φ̂ is set to zero. is results in no importance sampling for
the initial VPL set, as Pacc is conservatively clamped to 1 for every VPL. Over time, as the running
image estimate becomes more accurate, the acceptance probabilities become less conservative. As the
number of rendering iterations grows, the importance sampling becomesmore aggressive and the VPL
distribution gradually shis towards the regions of importance to the viewpoint.

In case the image needs to be rendered in a single pass, Φ̂ can be computed using the importance
records and a number of pilot VPLs or with some other method such as (bidirectional) path tracing.
Note that the estimate Φ̂ need not be very precise for the method to work; however its accuracy does
affect the efficiency of the importance sampling.

5.2 Results

We have implemented the above described VPL resampling algorithm in a progressive rendering sys-
tem where the viewpoint and the objects can be manipulated interactively. When the interaction is
stopped, a high quality image is obtained by averaging the results of independentmany-light rendering
iterations. Below we summarize the results obtained on three different scenes with varying illumina-
tion and occlusion characteristics.

e EG scene, shown in the top row of Figure 5.2, has one point light source placed around the corner
behind the camera, as illustrated schematically in Figure 5.1. It takes more than two bounces off the
walls on average for the light to reach the regions visible from the eye. On this scene, our resampling
method discards 93% of the VPL candidates to achieve the same visual quality as traditional VPL sam-
pling but with a much lower number of VPLs. is average acceptance probability of 0.07 corresponds
to more than an order of magnitude increase in efficiency in the rendering stage.

Figure 5.2c shows the popular S palace scene illuminated by one directional light source. e
image was rendered with an average VPL acceptance probability of 0.28.

L  is a typical architectural scene, shown in Figure 5.2d, where sunlight can reach the in-
terior only through the blinds on the windows. Almost all the illumination in this scene is indirect.
Traditional sampling places most VPLs on the outside walls; our resampling method efficiently dis-
cards these VPLs early on and only keeps about 23% of all candidates.

5.3 Discussion

Our experiments show that in highly occluded scenes, for the same number of light subpaths, our
importance-driven VPL distribution method can produce an image very similar to that of traditional
instant radiosity [73] but using a small fraction of the generated VPLs. Due to the probabilistic re-
jection based on connecting every VPL candidate to all importance records, our method requires the
sampling ofmore light subpaths and tracingmore rays than instant radiosity to produce the same num-
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c) Sponza (avg. acceptance prob. = 0.25) d) Living room (avg. acceptance prob. = 0.33)

b) EG (avg. acceptance prob. = 0.07)a) EG (traditional VPL sampling)

Figure 5.2: ree scenes rendered with our importance-driven VPL resampling method. a) In this scene,
most VPLs produced by traditional sampling do not contribute any energy to the image (see the schematic
illustration in Figure 5.1). b) Our resampling method produces a much smooth result with the same
number of VPLs, where only 7% of all proposed VPLs were accepted. c)e S scene rendered using
4× fewer VPLs than traditional sampling with the same image quality. d) In the L  scene, 77%
of the VPL candidates are discarded by our algorithm.

ber of VPLs. However, we found that this overhead does not increase the total image time noticeably in
practice, because the rendering stage remains significantly more expensive than our VPL distribution
stage. And because our method is a simple extension to instant radiosity, the good VPL distribution
typically obtained by using low-discrepancy sampling patterns can be preserved in the regions of im-
portance to the image. is is more difficult to achieve with previous methods [123, 124] which rely
on multiple or heavily correlated sampling techniques.

Our method introduces two parameters: the minimum acceptance probability Pmin
acc and the number

of importance records NIR. In all our tests we used Pmin
acc = 0.05 and NIR = 100, and did not see benefit

from fine-tuning these parameters per scene. However, in scenes with high geometric or lighting vari-
ation in the visible regions, a larger number of importance records may be required to obtain accurate
estimates for the the VPL contributions Φ̂k.

Our algorithm is easy to implement on top of an existing many-light renderer. It is also easy to paral-
lelize since VPLs are resampled on-the-fly as they are generated and each VPL is subjected to rejection
independently from all the others. Even though the required intermediate storage for the importance
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records is low, this memory footprint can in fact be completely eliminated by sampling a new set of im-
portance records when estimating the image contribution of each VPL. While doing so would double
the computational cost of that estimation, we expect the increased overhead to remain negligible.

In large-scale scenes withmany light sources, where the eye sees only a small part of the scene (e.g. one
room in a building), ourmethod can be combinedwith the technique ofWald et al. [148] to estimate the
image importance of each light source prior to sampling the VPLs. In a progressive rendering setup,
the accuracy of this importance estimation can be improved aer every iteration. As an alternative,
the importance of each light source can be derived from its actual contribution to the running image
estimate.

Finally, our method is best suited to scenes where the lighting distribution in the visible scene regions
is mostly uniform. When this distribution is highly non-uniform, a large number of VPLs may be
required to obtain a smooth result, since in such cases different VPL subsets are important to different
image regions. However, large VPL counts can make the rendering stage prohibitively expensive. We
will address this problem in the following chapter by devising a method to efficiently find the fewmost
important VPLs at every visible surface point in the scene.
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Importance Caching
for Many-light Rendering 6
Many-light rendering is an attractive and flexible approach for solving the global illumination problem:
a coarse, artifact-free approximation can be quickly obtained with a few VPLs, while increasing the
number of VPLs to a sufficient level yields a high-fidelity image. However, in scenes with complex
visibility configuration and lighting distribution, a large number of VPLs is oen required to obtain an
accurate solution. is can substantially increase the computational cost of the rendering stage, where
traditionally every VPL is connected to the endpoint of every eye subpath (Eq. 4.18), even though only
a small fraction of all VPLs contribute significantly to each pixel. In Chapter 5 we showed how to
distribute VPLs in the scene according to their total image contribution. In this chapter, we go one
step further and attack the problem of estimating the value of each pixel from thousands of VPLs.

Various methods have been proposed to improve the scalability of many-light rendering since Keller
introduced the basic instant radiosity algorithm [73]. Some approaches use adaptive clustering to han-
dle the many VPLs necessary to render scenes with complex lighting. e lightcuts method [150, 151]
computes a pixel estimate from a cut in a VPL tree. e cut is derived by bounding the contributions
of entire VPL clusters locally at each surface point, assuming full visibility. Wang and Akerlund [154]
use a VPL tree to randomly select a few VPLs based on the product of the unoccluded incident VPL
radiance and the BSDF at the surface point. By clustering VPLs together and employing heuristics to
roughly estimate their contributions, these methods aim to efficiently find a small representative set
of VPLs at every surface point. However, like most importance sampling methods we discussed in
Section 4.7.1, they compute this representative set independently at each point, without taking advan-
tage of the fact that the VPL contributions usually vary piece-wise smoothly over surfaces. Moreover,
the VPL set can be unnecessarily large in highly occluded scenes as the heuristics disregard occlusion.
Reconstruction cuts [150] address the former issue by interpolating lightcut contributions across im-
age pixels, while Herzog et al. [50] combine lightcuts and radiance caching to further improve the
efficiency and the accuracy of the interpolation. While interpolation exploits illumination coherence,
it also introduces bias in the image that is impossible to completely eliminate. Interactive many-light
methods achieve high efficiency through evenmore aggressive interpolation, visibility approximations,
and optimized implementation on graphics hardware [116, 24, 117].

In this chapter, we propose a stochastic approach for handling large numbers of VPLs. Instead of
evaluating the contributions of all VPLs to every pixel, we compute aMonte Carlo estimate of this sum.
e key to achieving efficiency with this approach is to select a small number of VPLs for each pixel
from a discrete distribution that is ideally proportional to their contributions. We amortize the costly
construction of these probability distributions by sharing them among pixels in a way that exploits
illumination coherence. At a sparse set of locations in the scene, we evaluate the exact contributions of
all VPLs and derive several types of distributions from these evaluations. Multiple cached distributions
are then used for selecting VPLs at other locations, and we combine all estimators using a bilateral
multiple importance sampling framework that employs a novel aggressive weighting heuristic.
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Our method handles direct and indirect illumination simultaneously, and the VPL sampling distribu-
tions consider all terms of the measurement contribution function, including visibility. We demon-
strate that this can deliver significant variance reduction in occluded scenes with complex lighting,
where visibility is oen a major source of variance. Since our approach does not introduce interpola-
tion bias, high-fidelity results can be obtained progressively with a bounded memory footprint. We
also demonstrate a simplified version of our method that can produce accurate low-noise previews at
interactive rates.

6.1 Algorithm overview

Our goal is to compute aMonte Carlo estimate of the light transport integral (Eq. 3.27) for each pixel in
the image. We attack this problemviamany-light rendering, which amortizes the path sampling cost by
sharing a common set of light subpaths among all pixel integrals. We render the image progressively,
accumulating the results of independent sampling iterations. At the beginning of each iteration, we
create a set ofM virtual point lights (VPLs) using the resamplingmethod fromChapter 5. Even though
the obtained VPL set is relevant to the chosen viewpoint, evaluating the contributions of all VPLs can
be prohibitively expensive when their number is in the order of thousands or more. Our solution is
based on an unbiased Monte Carlo estimation of the many-light sum in Equation 4.18:

Î ML =
M

∑
k=1

h(x,vk) ≈
m

∑
k=1

h(x,vk)

P(vk|x)
=

m

∑
k=1

B(x,vk)L(x,vk)G(x,vk)V (x,vk)

P(vk |x)
= Î IC, (6.1)

which evaluates the contributions of a much smaller number m≪M of VPLs, chosen from a discrete
probability distribution P conditioned on the eye subpath vertex x. In the interest of keeping the nota-
tion in the remainder succinct, in the above equation we have regrouped some of the terms in the VPL
contribution h(x,vk) as follows: G and V are the regular geometry (Eq. 3.11) and visibility (Eq. 3.13)
terms, respectively. Without loss of generality, we have assumed that the transmittance between x and
vk is one, i.e. that there are no participating media in the scene. e terms B and L incorporate the
sampling throughputs and scattering terms at the eye subpath vertex x and the VPL vk, respectively:

B(x,vk) =Ct−1(z)ρs(zt−1,ωzt−2zt−1 ,ωzt−1yik , jk
)

L(x,vk) =C jk(y)ρs(yik, jk ,ωyik , jk−1yik , jk
,ωyik , jk zt−1)

1
N ·Pacc(vk)

.

(6.2)

(6.3)

e throughput, scattering, and light subpath count normalization terms above come from the many-
light estimator in Equation 4.18, with x≡ zt−1 and vk ≡ yik, jk . e L term in addition incorporates the
VPL acceptance probability Pacc(vk) (Eq. 5.4).

Similarly to the probabilistic VPL acceptance decision in Chapter 5, the Monte Carlo estimation of the
sum in Equation 6.1 can only increase the variance of the pixel estimator. And again, efficiency can
be greatly improved if the sampling distribution P is chosen carefully. In fact, making P exactly pro-
portional to the VPL contribution h(x,vk) results in a zero-variance estimate which could be obtained
using a just single VPL per pixel, as shown in Figure 6.1b. Unfortunately, while sampling from this
particular distribution is actually feasible, it is impractical since computing the distribution requires
evaluating the contribution of every VPL vk at point x, which defeats the purpose of estimating the
sum via Monte Carlo in the first place.

A common approach to making the VPL importance distribution cheaper to compute is to exclude the
visibility term from it [5, 12, 154]. However, as Figure 6.1c demonstrates, doing so in occluded scenes



Chapter 6: Importance caching for many-light rendering 63

a) Reference b) Ideal distribution c) Ideal without visibility b) Visibility only

Figure 6.1: A scene lit by an environment map, with direct and indirect illumination approximated by
6000 VPLs. a) Rendering all VPLs gives the exact result. b) Choosing a single random VPL per pixel pro-
portionally to its actual contribution results in perfect importance sampling. c) Excluding visibility from
this ideal distribution leads to excessive variance. d) Using only visibility as an importance distribution
yields a better result, highlighting the importance of accounting visibility when choosing the VPL.

can destroy proportionality and lead to a dramatic increase in variance. Moreover, with this approach
the total rendering time is still dominated by the construction of the distribution.

Following the above observations, we propose a solution that:
1. samples VPLs from a distribution that accounts for visibility,
2. exploits illumination coherence to amortize the distribution construction over many pixels, and
3. remains robust at discontinuities.

6.1.1 Importance caching

Our approach is based on the idea of taking a set of evaluated VPL contributions at one location and
reusing these evaluations in the form of importance at other locations. At every rendering iteration,
we first perform full VPL evaluation at a sparse set of surface points r j generated by tracing random
rays from the eye. Each of these importance records (IRs) stores the contributions h(r j,vk) of all VPLs
vk. e set of contributions at r j is then normalized to a probability distribution Pj(vk) for sampling
VPLs at nearby surface points. Pj represents the fully evaluated VPL contributions, including visibility.
Reusing this distribution at other locations allows for exploiting illumination coherence in an unbi-
ased way. us, instead of constructing a costly and only approximate distribution at every shading
point x, we create ideal distributions at a small number of points – the importance records. ese
distributions are stored in memory as easy-to-build one-dimensional discrete cumulative distribution
functions (CDFs). e full algorithm is graphically illustrated in Figure 6.2.

During the final rendering stage, at each eye shading point x we first find the R nearest importance
records r j according to the following distance metric:

d(x,r j) = ||x− r j||+λ
√

1−nx ·nr j , (6.4)
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b) Importance cachinga) Importance-driven
VPL distribution

c) Final rendering

importance record

view
frustum

pixel shading point
accepted VPL
rejected VPL zero contribution

non-zero contribution

Figure 6.2: Overview of our algorithm. a) We begin by distributing a set of VPLs in the scene using the
importance-driven method from Chapter 5. b) We then evaluate the contributions of all VPLs to every
importance record (IR) sampled from the eye, and derive a few VPL importance distributions from these
evaluations. c) During the final rendering stage, at each shading point we use the distributions gathered
from the few closest IRs to importance sample the VPL contributions at that point.

where nx and nr j are the surface normals at x and r j, respectively. Similar metrics are common in
illumination interpolation methods, e.g. irradiance caching [157], where λ trades off the importance
of Euclidean distance and difference in surface orientation. e IRs are organized in a range-search
kd-tree. Lookups are performed using a two-step filtering approach similar to the one of Clarberg
and Akenine-Möller [11]. We set the nearest neighbor count to R = 3 and use λ = 0.5/D where D is
the scene’s bounding box diagonal. We use the distributions from the closest IRs to evaluate the pixel
estimator Î IC (Eq. 6.1). is way, the pre-sampling setup for x is reduced to a nearest neighbor search.

When reused at a spatially close location x, we can expect that, while not ideal anymore, the distribution
Pj(vk) from an importance record r j will most oen be closely proportional to h(x,vk). is leads to
good importance sampling in such cases. However, the proportionality decreases at discontinuities,
which can in turn significantly increase the variance. We combat this problem in two ways.

When reusing Pj across an illumination discontinuity, important VPL contributions at x might be
assigned low (sometimes even zero) sampling probability, e.g. if a light source was in shadow at r j.
erefore, in addition to this aggressive distribution, at each IR r j we build three more increasingly
conservative distributions derived from h(r j,vk) that are less likely to miss important new VPL contri-
butions in the vicinity of r j. We devise these sampling distributions by identifying the different situa-
tions that cause changes in VPL contribution due to variations in position and orientation (Sec. 6.2).

Second, we combine themany distributions borrowed from nearby IRs around each shading point x in
a way that tries to preserves the qualities of each distribution. We perform a “bilateral” multiple impor-
tance sampling combination using a novel α-max heuristic that weights the distributions according to
a specified prioritization (Sec. 6.3).

Our method does not distinguish between the different kinds of VPLs, e.g. finite (from area lights) and
infinite (fromenvironment lights) or direct and indirect. iswaywe effectively importance sample the
total incident illumination at every pixel shading point. In addition, thanks to the unbiased exploitation
of coherence, we can discard all cached data at the end of every rendering iteration to obtain a high-
fidelity solution by progressively averaging independently rendered images.
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Figure 6.3: Four situations encountered when reusing data from the importance records (IRs) r1 and
r2 at the shading point x. At each IR we define four distributions designed to discover important VPL
contributions in each situation. a) In the ideal case of locally smooth illumination, full contribution sam-
pling (F ) can achieve very close proportionality. b) e unoccluded distribution (U ) is robust to VPL
contribution changes due to variation in occlusion. c) Bounded contribution sampling (B) in addition
tries to discover new important contributions due to orientation changes. d) e conservative uniform
sampling (C) handles the rare cases where the importance information at the nearest IRs is irrelevant at
the shading point x.

6.2 VPL sampling distributions

Recall that each importance record (IR) r j stores the local contributions of all VPLs vk as a normalized
discrete probability distributionP(vk |r j). Given a nearby shading point x, if the illumination is locally
smooth, it is likely that P(vk |r j) will be roughly proportional to h(x,vk), leading to good importance
sampling. However, in regions around illumination discontinuities there can be little or no correlation,
leading to excessive variance. High variance is mainly caused by high-energy regions in h(x,vk) not
being present in h(r j,vk) and consequently sampled with low probabilities.

We identify the causes for changes inVPL contributions between surface points, and at each IRwe build
four increasingly conservative importance distributions from the VPL evaluations. ese distributions
help the sampling remain robust when reusing importance across discontinuities.

6.2.1 F : Full contribution

As discussed above, the most straightforward distribution to define at each IR r j is the one obtained
by normalizing the contributions h(r j,vk) of all VPLs. is full contribution distribution (Fig. 6.3a),
which we denote by F(vk |r j), is our most aggressive distribution and is also the one with the highest
importance sampling potential. It can in fact achieve perfect proportionality in some cases, e.g. on flat
diffuse surfaces illuminated by unoccluded (infinite) directional light sources, in which case h(x,vk) is
independent of the position x. F oen discovers the largest fraction of the energy at x as we will show
in Section 6.4 below.
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Figure 6.4: Upper bounds for the geometry term in the connection throughput between a VPL vk and
points within the region of influence of an importance record r j (see Section 6.2.3).

6.2.2 U : Unoccluded contribution

It sometimes happens that all IRs r j in the region around a shading point x agree on the importance
of a particular VPL vk, though inconsistently with its actual contribution at x. In scenes with com-
plex geometry distribution, these inconsistencies are oen caused by changes in the visibility term, i.e.
V (x,vk) ̸= V (r j,vk). False positives (e.g. v1 in Figure 6.3b) increase variance but are usually not too
problematic as their contribution at x is simply zero. On the other hand, if a false negative (e.g. v2 in
Figure 6.3b) is sampled with a low probability, variance can explode.

e unoccluded contribution distribution U(vk |r j) is a conservative modification of F that is de-
signed to discover VPL contributions potentially missed by F due to changes in visibility. is distri-
bution is also built from the VPL contributions at r j but assuming full visibility, i.e. by normalizing the
unoccluded contributions B(r j,vk)L(r j,vk)G(r j,vk) of all VPLs. e resulting sampling technique is
particularly good at finding small-scale illumination features, such as a bright spot on a surface pro-
duced by a thin light beam passing through a small window or a collection of leafs (see Figure 6.6).

6.2.3 B: Bounded contribution

Sometimes all IRs r j around x may falsely suggest a low or zero contribution of vk due to differences in
surface orientation. Figure 6.3c illustrates such a case, where G(x,vk) > G(r j,vk). e actual contri-
bution h(x,vk)might in fact be small, but if sampled with a too low probability, variance can increase.

e bounded contribution distributionB(vk |r j) is a conservative extension ofU targeting orientation-
induced false negatives. Knowing that each IR will be used in a small local neighborhood, we build the
B distribution from the contributions B(r j,vk)L(r j,vk)Gmax(r j,vk). Here, Gmax(r j,vk) is the upper
bound for the geometry term between the VPL vk and points x in the neighborhood of the importance
record r j (see Figure 6.4). If vk is a sample on an infinite light source, we have Gmax(r j,vk) = cosθmin

j ,
where θmin

j is the minimum angle between nr j and the VPL direction in the region of influence of r j,
whose estimation we describe below. Otherwise, vk is a surface point and we need to find an upper
bound for the full geometry term G(r j,vk) =

cosθ j cosθk
d2 , where d = ∥r j−vk∥.

We bound each term in G(r j,vk) individually, i.e. we compute Gmax(r j,vk) =
cosθmin

j cosθmin
k

(d min)2 . For this
we need the radius r j of the region of influence of r j. We estimate r j by dividing the radius of the eye ray
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footprint at r j by the screen-space IR density. e distance bound is then d min =max(0,d−r j), where
d = ∥r j− vk∥. For the bound θmin

k we find the maximum change ∆θk = −asin(r j/d). Is it difficult
to find a bound for θ j without analyzing the geometry surrounding r j. We compute θmin

j using a
maximum change of ∆θ j =−30◦, which worked better in our tests than the conservative θmin

j = 0◦.

e B distribution usually finds VPLs with small contributions. It does so, however, with a sufficiently
high probability to avoid excessive variance (see middle row in Figure 6.6).

6.2.4 C: Conservative distribution

When the nearest IRs around x are far way in terms of both position and orientation, false negatives
can occur that neither F , U , or B handle. An example is shown in Figure 6.3d. Such situations arise
when strong illumination falls on a surface that has a small screen-space footprint and unique orienta-
tion in its neighborhood. For such rare cases where no useful importance information can be reliably
extracted from any of the nearest IR, we use the most conservative uniform sampling distribution C
which assigns equal probability to all VPLs.

We can still detect such potentially problematic cases by looking at the distances (Eq. 6.4) between the
shading point x and its closest IRs. If the average distance is above a certain threshold, we increase the
number of VPLs chosen from C. is decreases variance in a brute-force yet adaptive way.

6.3 Bilateral combination of sampling distributions

During the final rendering stage, at every pixel shading point x we find the R nearest importance
records (IRs) and use the four distributions cached at each of them to evaluate the Î IC estimator in
Equation 6.1. We combine the resulting estimates by transforming Î IC into a multiple importance
sampling (MIS) estimator. While MIS was originally developed for continuous distributions, it triv-
ially applies to the discrete case as well. In order to avoid bias we must ensure that every VPL vk with a
non-zero contribution is chosen with a non-zero probability; however, all F , U , and B can have zeros.
Fortunately, MIS does not require each individual distribution to be non-zero everywhere [142]. us,
including C is sufficient to guarantee the unbiasedness of the resulting combined estimator.

Once we have gathered 4R distributions from the R nearest IRs, we can construct an MIS estimator
by choosing an appropriate weighting heuristic. Figure 6.5a shows a matrix arrangement of the dis-
tributions cached at the R = 3 nearest IRs around the red-marked point in Figure 6.6. As expected,
the three distributions in each row correlate closely, while the four increasingly conservative distribu-
tions in each column have dissimilar structures. Because Veach’s [142] MIS heuristics are solely based
on sampling probabilities, they cannot exploit this additional information, which may hint to when a
particular distribution is better than the others. Choosing one of Veach’s heuristics to weight all 4R
distributions can thus be sub-optimal.

We propose a bilateral, two-stage combination of the distributions in the matrix using different heuris-
tics schemes for the rows and columns in order to better preserve the qualities of each distribution.
We first construct an MIS estimator that mixes the R distributions in each row. is way, we concep-
tually collapse all columns into one. e four distributions in this resulting column are subsequently
combined using a novel heuristic to form the final MIS estimator.
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Figure 6.5: Combining VPL sampling distributions. a) A matrix arrangement of the four distributions
(columns) at the three closest records (rows) to the red-marked point in the le image in Figure 6.6. Notice
the correlation among the columns. Direct illumination VPLs are in the beginning of the VPL list, hence
the higher probabilities in the le. b) A balance heuristic mixture pb of a distribution p and a defensive
uniformdistribution pu ruins the local proportionality of p to the integrand f in the le part of the domain,
while still resulting in lower than optimal probabilities outside the peak. c) By adaptively partitioning the
sampling domain, our novel α-max heuristic avoids mixing and instead selects for each partition the
distribution with closest proportionality in a user-controlled way.

6.3.1 Column combination

An MIS pixel estimator that combines all R distributions in row i using a column weighting heuristic
wcol

i, j reads:

Î ICi =
R

∑
j=1

R
ni

ni/R

∑
k=1

wcol
i, j (vi, j,k)

h(x,vi, j,k)

Pi(vi, j,k |r j)
, i = 1, ..,4 (6.5)

where P1 = F , P2 = U , P3 = B, P4 = C, taking ni/R samples from each of the R distributions.

Since we do not have reliable means to detect all discontinuities, e.g. shadow penumbrae, we cannot
determine which IRs correlatemost with the shading point x. erefore, we avoid aggressive weighting
for combining the columns j and opt for the safest combination – the balance heuristic:

wcol
i, j (v) =

Pi(v |r j)

∑R
l=1 Pi(v |rl)

. (6.6)

e balance heuristic corresponds to sampling from the mixture distribution (see Section 2.5.6)

Pi(v) =
1
R

R

∑
l=1

Pi(v |rl). (6.7)

is combination can be interpreted as importance interpolation at the shading point x that gives equal
weight to all IRs. We can construct the mixture CDF for Pi implicitly during sampling, by traversing
the individual CDFs in a synchronized binary search and averaging their elements. Compared to sam-
pling from each component separately, mixture sampling requires R times fewer random numbers and
facilitates sample stratification. Equation 6.5 now simplifies to an ordinary secondary Monte Carlo es-
timator:

Î ICi =
1
ni

ni

∑
k=1

h(x,vi,k)

Pi(vi,k)
. (6.8)



Chapter 6: Importance caching for many-light rendering 69

6.3.2 Row combination

In order to obtain the final pixel estimator, we combine the four row estimators Î ICi using a row weight-
ing heuristic wrow

i :

Î IC =
4

∑
i=1

1
ni

ni

∑
k=1

wrow
i (vi,k)

h(x,vi,k)

Pi(vi,k)
. (6.9)

For wrow
i the balance heuristic is not necessarily the best choice. Each of theF , U , B, and C techniques

is designed to achieve as close as possible proportionality, i.e. to make the problem low-variance [142],
in different situations. Figure 6.5b illustrates that averaging a locally proportional distribution and
a uniform distribution can destroy the qualities of both over the whole domain. In such cases, more
aggressive heuristics can performbetter, e.g. the power ormax heuristics [142]. ese heuristics weight
the techniques proportionally to their probabilities under the assumption that higher probabilities lead
to lower variance. While this approach avoids extreme variance, it can still ruin local proportionality.
is can be seen in Figure 6.5c, where the uniform distribution pu has higher probability around the
boundaries of the middle partition, yet p alone results in a zero-variance estimator for that entire
partition.

The α-max heuristic
We oen have additional knowledge about the distributions, e.g. we expect certain distributions to
perform well more oen than others. We propose an α-max heuristic to exploit this knowledge:

wα
s (x) =

1, if wα
i (x) = 0, for 1≤ i < s, and ps(x)≥ max

s<i≤n
αi pi(x),

0, otherwise,
(6.10)

where x has been sampled from ps, and each of the n distributions pi has an associated priority index i
and confidence valueαi ∈ (0;1]. Setting all confidence valuesαi = 1 gives Veach’s max heuristic, while
α1 is a redundant parameter that we set to 1.

e α-max heuristic partitions the sampling domain by assigning each distribution to regions where
its probability is larger than that of the lower-priority distributions scaled by their confidence values.
is controlled partitioning can better preserve proportionality if some a-priori information about the
distributions is available. is can lead tomore effective variance reduction than heuristics based solely
on probabilities. Figure 6.5c right demonstrates this, with the ordering (αp,αpu) = (1,0.2). It also
illustrates how our α-max heuristic, with αpu being a trade-off parameter, can be used as an alternative
to defensive importance sampling [51] which also suffers from mixture proportionality deterioration.
is deterioration can be remedied effectively by the α-max heuristic, as we will further demonstrate
in Section 6.4.

For the distributions from Section 6.2 we use the ordering F , U , B, C. is prioritization follows the
increasing conservativeness of the distributions, ranking F highest.

6.3.3 Distribution optimization

Veach [142] argues that zero-weight heuristics waste computation on generating samples that are sub-
sequently ignored. However, the α-max heuristic can in fact be more computationally efficient than,
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Method Preprocess Rendering
VPL CDF Sampling Shading Ray tracing Other

Our importance caching 3% 14% 30% 3% 42% 8%
Resampled importance sampling 0% - 3% 70% 24% 3%

Table 6.1: Fractional time break-down for the FUBCα and RIS images in Figure 6.6 rendered in 20 sec.
e “Other” column includes the time for eye ray tracing and nearest importance record search.

e.g., the power heuristic. Since weights are based on cheap to compute sampling probabilities, we can
avoid the costly contribution evaluation (which involves ray tracing) of VPLs whose MIS weight is
zero.

e above observation can be further exploited to avoid generating samples that would end up being
discarded in the first place. is can be achieved by reducing the redundancy, i.e. overlap, of the dis-
tributions being combined. To this end, we modify the distributions at each IR r j right aer their
construction as follows. For every VPL vk and every Pi (corresponding to F , U , B, C), we multiply
Pi(vk |r j) by wα

i (vk) and then re-normalize the corresponding CDF. is way we partition the sam-
pling domain (the set of VLPs vk), so that exactly one of the four distributions at r j has a non-zero
value for every VPL. is in turn increases the sampling probabilities aer re-normalization. Note
that since the optimization is performed at each record independently, it does not entirely eliminate
all redundancies in the final mixture distributions (Eq. 6.7) used during the final rendering, where the
α-max weighting is applied again.

6.4 Results

We implemented our importance caching method in a basic ray tracer and performed tests on a mid-
range 4-core Intel Core i7-860 CPU.e images in each comparison were rendered in equal time of 20
sec at 1024×768 resolution. All images were produced by progressively averaging three independent
rendering iterations, each using 2700 importance records and 8000 VPLs. Table 6.1 summarizes the
average fractional time spent in the different steps of our algorithm compared to resampled importance
sampling (explained below).

6.4.1 Technique comparison

Figure 6.6 shows the S  scene illuminated by the high frequency St. Peter’s cathedral environ-
ment map, rendered with full global illumination using different methods. e configuration of this
scene allows us to compare all sampling distributions and combination strategies as it exhibits a variety
of lighting conditions. ese include smooth direct and indirect illumination, small-scale lighting and
geometric features, as well as occlusion.

Each label in Figure 6.6 denotes the distributions and weighting heuristic used to produce the corre-
sponding image. β denotes the power heuristic (Eq. 2.47) with β = 2, ‘d’ denotes defensive importance
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FUBCα FUBCα
unopt FUBCβ FUCα FCα FCd UBCα CReference RISReference

Figure 6.6: A comparison of various rendering configurations on a scene with small-scale geometry fea-
tures illuminated by a high-frequency environment map. e label above each zoom-in denotes the sam-
pling distributions and combination heuristic employed. For each image we sample 35 VPLs per pixel per
progressive rendering iteration, distributed manually among the distributions to achieve the best result.
e reference image was rendered using FUBCα in 1000 sec, while the other images took 20 sec.

10

F U B C

Figure 6.7: Fractional contributions of the individual VPL sampling distributions to the reference image
in Figure 6.6. With the so chosen α-max parameters, F contributes 93.8% of the energy in the image, U
and B account for 3% each, leaving 0.2% of the contribution to C.

sampling with 0.4 weight for the conservative (uniform) distribution C, and α denotes the use of our
α-max heuristic with (αF ,αU ,αB,αC) = (1,0.5,0.5,0.3).

Overall, the full contribution sampling techniqueF performs remarkably well in regions with smooth
illumination, as it exploits any available coherence (Fig. 6.6 insets). In such regions it samples the VPL
contribution function h(x,vk) with close proportionality, yielding a low-variance estimate. However,
this proportionality is ruined when averagingF with other distributions. e power heuristic (Fig. 6.6,
FUBCβ) and especially defensive importance sampling (Fig. 6.6, FCd) increase variance over α-max
in such regions by 45% and 330% respectively.

When F misses important contributions it is oen due to changes in occlusion between the locations
of the importance records and the shading point. While C does not provide high enough sampling
probabilities, U is more efficient at discovering new unoccluded VPLs, as seen when comparing the
FCα and FUCα images (particularly the bottom row in Figure 6.6).

e FUBCβ and FUBCα
unopt technique combinations do not use distribution optimization scheme

from Section 6.3.3. As a result, B does not capture some orientation-induced false negatives effectively
because it is too conservative. Aer distribution optimization, the average increase in probability for
F , U , B, C is respectively 0.05%, 20%, 454%, 50%. e significant increase in B is mostly due to the
eliminated redundancies with U (the redundancies can be seen in Figure 6.5a). e best result is then
produced by FUBCα, with low-variance regions of smooth illumination and no “firefly” pixels.
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Figure 6.8: e S  scene illuminated by 36 area lights and an environment map. e RMSE
convergence plots compare our importance caching (IC) algorithm against path tracing (PT) and resam-
pled importance sampling (RIS). a) Direct illumination only, using the St. Peter’s cathedral environment
map. b) Full global illumination, using a sunset environment map.

e benefit of including occlusion in the VPL sampling distributions can be seen when comparing the
FUBCα image to the UBCα image whose variance is 10× higher. We also compare against resampled
importance sampling (RIS), as well as against uniform VPL sampling (i.e. C alone) which produces a
similar result to path tracing. For RIS, we first evaluate the unoccluded contributions of S randomly
chosen VPLs at every shading point and then draw S/20 samples from an on-the-fly constructed CDF
over these evaluations. Even though UBCα relies on sometimes inaccurate borrowed distributions,
it remains superior to RIS as it utilizes importance information for all VPLs, while RIS chooses the
initial S candidates blindly with a uniform probability. Increasing the RIS candidate count S has a
negative impact on the computational performance without delivering a noticeable improvement in
image quality.

e reference image in Figure 6.6 has been produced using ourFUBCα methodwith a large number of
rendering iterations. Figure 6.7 visualizes the fractional contributions of the individual distributions to
that image. F achieves close proportionality almost everywhere and consequently contributes almost
94% of the total energy in the image. U and B capture almost all of the remaining energy (3% each),
leaving a very small fraction, 0.2%, to C. It is important to note that U , B, and C together require about
6×more samples thanF due to their increasing conservativeness (which is slightly ameliorated by the
optimization scheme from Section 6.3.3). Still, the overall energy contribution to the image from these
distributions is comparatively small.

6.4.2 Numerical convergence

In Figure 6.8 we demonstrate the ability of our importance caching method to simultaneously handle
large numbers and different types of light sources. We also measure its error convergence against
path tracing and resampled importance sampling for direct and full global illumination separately.
e graphs on the right of each image compare the root mean squared error (RMSE) of the three
methods. Due to the geometry term clamping in the connection throughput of indirect illumination
VPLs (Sec. 4.3.2), in order to produce meaningful plots the path tracer has been slightly modified so
that all threemethods converge to the same biased solution. In both cases, IC consistently outperforms
PT and RIS with an average variance reduction of 9× and 4.8× respectively for the le image and 25×
and 9× for the right image.
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a) MIS b) RIS c) IC (our) d) IC+RIS (our)

Figure 6.9: ree glossy Buddha statues with Phong BSDF exponents 10, 80, 300 (from le to right)
on a glossy ground with exponent 500, rendered in 20 sec using: a) MIS-combined BSDF/environment
importance sampling; b) Resampled importance sampling (RIS); c) Our importance caching algorithm
(IC); d) Combined IC and RIS (IC+RIS). While this scene is a failure case for our IC method, it still
outperformsRIS andMIS in regionswith occlusion and/or smooth illumination. e IC+RIS combination
achieves the best overall quality.

6.4.3 Glossy materials

Figure 6.9 shows three Buddha statues with increasingly specular Phong BSDFs [86] illuminated by the
St. Peter’s cathedral environment map. We compare our importance caching algorithm to resampled
importance sampling with the same sampling setup we use for the S  scene (Sec. 6.4.1), as
well as to an MIS combination of BSDF and environment map importance sampling.

Our importance caching (IC) method is not as well suited to scenes with glossy materials due to the
less available coherence to exploit – a result of the high frequencies in the geometry, BSDFs, and illumi-
nation. We can still notice that in occluded regions and in regions with low-to-mid frequency BSDFs
and geometry distributions, IC outperforms the other two methods, producing very smooth results.
However, with highly glossy BSDFs even slight orientation changes can make the importance record
data invalid at nearby shading points. In such situations the RIS and MIS algorithms perform better
than IC.

Based on the above observations we devised the following heuristic combination of IC and RIS. We
first compute the average “BSDF distance” between x and its R nearest importance records r j:

dBSDF = 1− 1
R

R

∑
j=1

ρs(x,ωr j ,ωx)

ρs(x,ωx,ωx)
, (6.11)

where ωx is the direction toward the eye, ωx is its reflection about the surface normal at x, and ωr j is
the reflection of the direction toward the eye at r j about the surface normal at r j. is metric captures
orientation differences between the glossy reflection lobes while treating the BSDFs as black boxes. If
dBSDF is below 0.5 we use our IC method to sample VPLs at x, otherwise we use RIS. e combined
IC+RIS algorithm (Fig. 6.9d) preserves the qualities of both IC and RIS by heuristically choosing the
better method locally at each shading point. Note that this approach further reduces the noise on the
statues, because RIS, which is now used more sparingly across the image, can take more samples in the
given time.
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Figure 6.10: A 2-second full global illumination preview quality comparison on the S  (le)
and S (right) scenes. Our importance caching algorithm (IC Fα), which here only employs an
α-max clamped F distribution, produces a low-noise image very similar to the reference. Even without
the U , B, and C techniques, our method handles orientation and visibility discontinuities reasonably well,
which are blurred away by direct importance visualization (DIV). Traditional instant radiosity (IR) suffers
from structured noise, while the resampled importance sampling (RIS) and path tracing (PT) images are
plagued by uncorrelated noise.

6.4.4 High-quality preview rendering

e results in Figure 6.7 suggest that we can obtain a quick, slightly biased but low-variance image es-
timate by using a small number of VPLs selected only from distribution F . e implementation then
only needs to store this one distribution at each IR. e α-max heuristic can still be utilized to avoid
excessive variance, which in the case of sampling only from F corresponds to simply discarding sam-
ples with probabilities below a certain threshold. If desired, the introduced bias can be compensated
for in a controlled way by selectively including U , B or C in the sampling process.

Figure 6.10 demonstrates the high quality achieved with one rendering iteration in 2 seconds using the
above described method, IC Fα, on the S  and S scenes, compared to RIS and PT, as
well as to traditional instant radiosity [73]. eWe also include direct importance visualization (DIV)
images which are produced by simply interpolating the irradiance cached at the nearest importance
records around each shading point. DIV is only slightly faster than ICFα; the latter evaluates the con-
tribution of only 4 VPLs per pixel, which now only takes about 30% of the total frame time. Although
noise-free, DIV blurs away all fine details, while instant radiosity suffers from severe structured noise.
On the other hand, RIS and PT produce images with high levels of uncorrelated noise.
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6.5 Discussion

Although the sampling framework of our importance caching method is unbiased, the use of VPLs in-
curs a small systematic error when geometric clamping is used. In addition, distributingVPLs from the
light sources becomes very inefficient in the presence of highly glossy BSDFs. Handling suchmaterials
with VPLs is a general problem, although solutions have been proposed [78, 47, 22].

Our implementation distributes importance records by uniformly sampling the image plane. We also
experimented with distributions that adapt to geometric discontinuities. However, this caused a de-
crease in IR density in regions of sharp illumination discontinuities, such as shadow penumbrae, lead-
ing to a noticeable increase in variance. A better strategy would be to adapt the IR distribution by
utilizing variance statistics obtained during rendering, which is an interesting avenue for future work.

To render an image, our algorithm needs about M×NIR× 4×sizeof(float) bytes of memory to
store 4 distributions over M VPLs at each of the NIR importance records. For the tests in Figures 6.6,
6.8 and 6.9 this amounted to about 330MB. is memory footprint can be decreased by splitting up
the image into tiles that are rendered independently. Alternatively, M and/or NIR can be reduced at the
cost of increasing variance.
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Vertex Connection
and Merging 7
Light transport simulation is a central problem in realistic image synthesis and has been an active area
of research for decades. Considerable advances have been made over the years with respect to the ef-
ficiency of light transport algorithms. However, such improvements usually come with some sort of
bias: Certain types of light interactions are oen disregarded or handled inefficiently. For instance,
the many-light rendering methods discussed in Chapters 5 and 6 can produce high quality images
very quickly but only on scenes with diffuse and not too shiny materials. e limited set of vertex
connection techniques employed by these methods necessitates path contribution clamping in order
to avoid high-variance image artifacts caused by geometric singularities and glossy BSDFs. e result-
ing approximations are sometimes acceptable but can lead to severe loss of image fidelity [83]. Such
problems can be alleviated to some degree by augmenting many-light methods with more sampling
techniques [78, 47, 22, 153, 96, 95], but none of these techniques can efficiently handle caustic paths.
Developing truly robust light transport algorithms that can efficiently and accurately capture the global
illumination in a variety of scenes remains an important challenge that we address in this chapter.

Bidirectional path tracing (BPT) [85, 143] is among the most versatile light transport algorithms avail-
able today in terms of the range of lighting configurations it can handle. e key to its robustness is the
provably good combination of various path sampling techniques via multiple importance sampling.
However, as we showed in Section 4.4, BPT cannot efficiently capture specular-diffuse-specular (SDS)
light transport, where the notion of ‘specular’ also includes sharp glossy interactions. is is indeed
an important practical limitation because such paths occur in any scene containing specular objects
and their image contribution is especially important in some very common cases such as an object en-
closed in glass, the interior of a car or a building, etc. e reason for this problem is that the sampling
techniques in BPT oen find SDS paths with very low probability that may even go to zero when point
light sources and pinhole cameras are used.

Efficient handling of SDS paths, on the other hand, has long been demonstrated with photon map-
ping (PM) [63]. Recently, progressive photon mapping (PPM) has been shown to converge to the
correct solution with a bounded memory footprint [41], as we discussed in Section 4.6. However,
PM is inefficient under diffuse lighting and it also has difficulties in scenes with many glossy objects,
as has been pointed out by Hašan et al. [47] and Vorba [146]. Together with the relatively low error
convergence rate [76], these problemsmake PPM impractical as a general global illumination solution.

Intuitively, a combination of BPT and PM would be beneficial, since these two methods complement
each other in terms of the light transport effects they can efficiently handle, as we saw in Figure 4.12.
In fact, PM has traditionally been combined with some of BPT’s path sampling techniques through
heuristics such as separating the direct lighting computation, splitting the photons into global and
causticmaps, and final gathering. However, as discussed byVeach andGuibas [144], such combination
can be far from optimal, and the adaptation of these heuristics to glossy reflectance is not obvious. We
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path classi�cation combination

our MIS combination4 min 30 min

Figure 7.1: Combining BPT and PM via a heuristic classification of paths into caustic and non-caustic
(see Section 7.5.1 for explanation) can be far from optimal (top insets). e combination proposed in this
chapter is based on multiple importance sampling and can be substantially more robust (bottom insets).

demonstrate this on two scenes in Figure 7.1 where we classify paths into caustic and non-caustic and
render these two path types with only PPM and BPT respectively.

Judging from the success of multiple importance sampling (MIS) in improving the robustness of BPT
compared to its initial formulation [85, 143] we can expect that an MIS-based combination of BPT
and PM would yield a more robust solution than the aforementioned heuristics. Some prior work has
already explored the application of MIS to photon mapping. To improve efficiency on scenes with
glossy materials, Vorba [146] uses MIS to combine radiance estimates at different eye subpath vertices.
However, his path pdf formulation disallows a meaningful MIS combination of PM and BPT estima-
tors, which estimate integrals of different dimension, as we will detail below. Bekaert et al. [3] apply
multiple importance sampling on top of their generalized kernel density estimator in a way similar
to Vorba [146]. Tokuyoshi [139] improves caustics on glossy surfaces through an MIS-based combi-
nation of PM and final gathering estimates. However, a principled and comprehensive combination
of BPT and PM has not been shown so far. is is due to important differences in the mathematical
frameworks used to formulate these two algorithms – BPT is a Monte Carlo estimator for the path
integral and PM is an outgoing radiance estimator based on photon density estimation.

In this chapter, we present a reformulation of photon mapping as a bidirectional path sampling tech-
nique for Monte Carlo light transport simulation, circumventing the concept of density estimation
altogether. e benefit of this new formulation is twofold. First, it makes it possible to explain, in a
formal manner, the relative efficiency of photon mapping and bidirectional path tracing, which have
long been considered conceptually incompatible solutions to the light transport problem. Second, it al-
lows us to employ multiple importance sampling to combine BPT and PM in a more robust rendering
algorithm that alleviates the problem of insufficient techniques. We demonstrate the efficiently of this
combined algorithm in handling a variety of illumination effects ranging from direct illumination and
diffuse inter-reflections to SDS light transport. We also develop a progressive version of the algorithm
that is consistent and retains both the higher O(1/N)mean squared error convergence rate of BPT for
most light paths and the efficiency of photon mapping for SDS lighting effects.

is chapter is organized as follows. In Section 7.1 we present our reformulation of photon mapping
as a bidirectional path sampling technique. In Section 7.2 we analyze the relative efficiency of PM and
BPT, which is made possible by this reformulation. In Section 7.3 we present a rendering algorithm
that combines techniques fromPMandBPT viaMIS, whichwemake progressive and consistent in Sec-
tion 7.4. Section 7.5 presents an evaluation of this progressive algorithm, followed by a final discussion
in Section 7.6.
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7.1 Photon mapping as a path integral estimator

Our goal is to combine photonmapping (PM) and bidirectional path tracing (BPT) viamultiple impor-
tance sampling. e first step is to formulate the two methods in a common mathematical language.
For this we choose the path integral formulation of light transport whichwe introduced in Section 3.5.4
and briefly review below. Since BPT is already defined in this framework, we only need to reformulate
the PMmethod. is involves deriving the integral estimated by PM as well as the corresponding path
sampling technique and its associated pdf that we could then plug into the power heuristic.

Without loss of generality, in the following discussionwe consider light transport paths of a fixed length
k. We start by writing the pixel measurement integral (Eq. 3.27) over all such paths:

Ik =
∫
Mk+1

fk(x)dµk+1(x), (7.1)

where fk is the measurement contribution function (Eq. 3.31) for length-k paths x = x0 . . .xk, illus-
trated graphically in Figure 7.2a. e differential product area measure dµk+1(x) = dA(x0) . . .dA(xk)
is defined on the space of all length-k pathsMk+1 =M× . . .×M (k+1 times). We will call paths of
the form x = x0 . . .xk regular paths, and the function fk(x) regular contribution function.
We restrict the following discussion to surface light transport. However, most equations below also
apply trivially to medium transport; we will point out important differences along the way.

7.1.1 Extended path space formulation

We now write the primary pixel estimator (i.e. for a single light subpath) resulting from the evaluation
of the photon radiance estimator (Eq. 4.22) at the (s+1)-th vertex from the light source using a blurring
kernel Kr with support radius r. is vertex ys is a photon and the estimator reads

Î PMk,s,r =Cs(y)Kr(ys,zk−s)ρs(zk−s,ωys−1ys ,ωzk−szk−s−1)Ck−s(z). (7.2)

Here, the BSDF is evaluated at the radiance estimate query point zk−s on an eye subpath zwith k−s+1
vertices with a sampling throughput Ck−s(z) (Eq. 4.6), as done in a practical implementation. e
actual value estimated by the above estimator is given by its expectation:

Ik,s,r = E
[
Î PMk,s,r

]
=

∫
Mk+2

fk,s,r(x∗)dµk+2(x∗), (7.3)

which is an integral over paths of the form x∗ = x0 . . .x∗s xs . . .xk = y0 . . .yszk−s . . .z0. Here we denote
the photon vertex by x∗s and the radiance estimate query vertex by xs. We refer to such paths x∗ as
extended paths, and call the spaceMk+2 extended space with an associated differential product area
measure dµk+2. e function fk,s,r is the corresponding extended contribution function:

fk,s,r(x∗) = ρ(x0)T (x0 . . .x∗s )Kr(x∗s ,xs)ρs(xs,ωxs−1x∗s ,ωxsxs+1)T (xs . . .xk)ρ(xk), (7.4)

where themeasurement throughputT and the scattering termρwere defined inEquations 3.32 and 3.33,
respectively. We illustrate this notation graphically in Figure 7.2b.

Note the extra area integration in Equation 7.3 compared to the regular path integral (Eq. 7.1) for the
same path length k (i.e. edge count). is integration over the possible locations of the photon vertex x∗s
corresponds to blurring the illumination with the kernelKr – a well-known effect of density estimation.
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Figure 7.2: Illustration of three different measurement contribution functions. e reduced function
operates on regular paths and computes a blurred contribution by integrating the extended function over
the photon position x∗s within the support of the kernel Kr (see Section 7.1.2).

Sampling technique for extended paths
Having obtained expressions for the path integral estimated by photon mapping (Eq. 7.3) and its cor-
responding contribution function (Eq. 7.4), we can rewrite Equation 7.2 as an ordinary Monte Carlo
estimator:

Î PMk,s,r(x
∗) =

fk,s,r(x∗)
p(x∗)

. (7.5)

e extended path x∗ = x0 . . .x∗s xs . . .xk = y0 . . .yszk−s . . .z0 is constructed by concatenating two sub-
paths y = y0 . . .ys and z = z0 . . .zk−s at their endpoints, which are sampled independently via random
walks from a light source and from the eye, respectively. e pdf of the full path, which is given by the
joint distribution of its vertices, is thus simply the product of the two subpath pdfs:

p(x∗) = ps(y)pk−s(z), (7.6)

where the subpath pdf is given by Equation 4.5.

We have now defined PM as path sampling technique with an associated pdf. An entire family of
techniques is obtained by considering different locations along the path for the radiance estimate,
s ∈ [1, . . . ,k− 1]. We call this family of techniques vertex merging as one can intuitively think of the
estimator Î PMk,s,r as merging the path vertices corresponding to a photon and the radiance estimate lo-
cation within a small neighborhood. is is in contrast to vertex connection (Eq. 4.14) which creates
a path edge between two subpath endpoints. Note that in practice photon mapping constructs many
extended full paths for every pixel that share the same eye subpath z up to the photon query location.

We could directly use these definitions to apply MIS and combine the results of the PM radiance esti-
mates at different vertices of an eye subpath. Indeed, that would correspond to what has been done by
Vorba [146] (with the difference that Vorba uses path vertex pdfs expressed w.r.t. the solid angle mea-
sure). However, we cannot use the above definitions for an MIS-based combination of BPT and PM.
e reason is that for a given path length (i.e. number of edges), the extended paths sampled by PM
contain one extra vertex, the photon x∗s , compared to the regular paths sampled by BPT.e pdf of an
extended path is consequently expressed w.r.t. a different, higher-dimensional product area measure
than the pdf of a regular path of the same length. e MIS heuristics expect the pdfs to be expressed
w.r.t. the same measure in order to yield a meaningful combination weight.
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7.1.2 Regular path space formulation

In order to combine BPT and PM using MIS, we must express the pdfs of same-length paths sampled
by BPT and PM w.r.t. the same measure, i.e. both methods should conceptually operate in the space
of either the extended or the regular paths. Both options are possible; we choose the space of regular
paths, because doing so preserves Veach’s original path integral formulation that we already discussed
extensively in Chapters 3 and 4. (We will discuss the alternative option in Section 7.6.) is means
that we need to express the PM path integral (Eq. 7.3) as an integral over regular, not extended paths.
We achieve this by considering the extra area integral in Ik,s,r as a nested integration problem to which
the path integral is oblivious:

Ik,s,r =
∫
Mk+1

 ∫
M

fk,s,r(x∗)dA(x∗s )

 dµk+1(x) =
∫
Mk+1

Fk,s,r(x) dµk+1(x). (7.7)

Here, x is a regular light path created from an extended path x∗ by leaving out the x∗s vertex and con-
catenating all the remaining vertices. e reduced contribution function Fk,s,r(x) blurs the contribution
of the regular path x in an r-neighborhoodMr around xs, which is described by an area integral of
fk,s,r:

Fk,s,r(x) =
∫
Mr

fk,s,r(x∗)dA(x∗s ), (7.8)

whereMr = {x ∈M | ∥xs− x∥ < r}. Note that it is the small support of the kernel Kr inside fk,s,r
that effectively limits the integration overM in Equation 7.7 to the r-neighborhoodMr of xs in Equa-
tion 7.8. We illustrate the reduced contribution function Fk,s,r graphically in Figure 7.2c.

Sampling technique for regular paths

We now interpret photon mapping (vertex merging) as a sampling technique for the Monte Carlo
estimation of the reduced path integral (Eq. 7.7), which samples regular paths x and usesFk,s,r(x) as the
contribution function. at is, a PM radiance estimate at vertex xs creates regular paths x = x0 . . .xk
via vertex connection between xs−1 and xs (one such path for each photon), excluding the photon
vertex x∗s . emeasurement contributionFk,s,r(x) of such a path now contains an extra area integration
that corresponds to blurring by the kernel Kr, as we described above. We interpret the photon vertex
x∗s as a Monte Carlo sample used to estimate that integral. More importantly, the photon serves as
a Russian roulette random variable that conditions the probabilistic acceptance of the proposed full
regular path. e path x is accepted if and only if the photon location x∗s is within distance r from
the radiance estimate location xs. is interpretation, illustrated in Figure 7.3b, is in line with the
traditional view and implementation of photon mapping, where photons outside of the search radius
are not considered in the radiance estimate.

e pdf of a regular path x generated with the above procedure is

p,s,t(x) = p,s,t(x)Pacc(x), (7.9)

where p,s,t(x) is the pdf for the vertex connection (VC) technique (Eq. 4.16) that samples x by con-
necting subpaths with endpoints xs−1 and xs. e acceptance probability on the right is the probability
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Figure 7.3: Two interpretations of photon mapping as a “vertex merging” path sampling technique.
a) Photon mapping can be considered to sample an extended path x∗ of length k that has k+ 2 vertices.
b) To remain compatible with the path integral framework we interpret this process as sampling a regular
path x of the same length (i.e. number of edges) that has only k+1 vertices, where the photon x∗s is used
as a Russian roulette variable. e path is accepted only if x∗s lies within distance r to the path vertex xs.

for sampling a photon inside the r-neighborhood of xs:

Pacc(x) = Pr(∥xs−x∗∥< r) =
∫
Mr

p(xs−1→x)dx

≈ |Mr| p(xs−1→x∗)≈ πr2 p(xs−1→x∗),

(7.10a)

(7.10b)

where p(xs−1→x) is shorthand for p(x|xs−1,ωxs−2xs−1). Exact analytic evaluation of the integral in
Equation 7.10a is generally impossible. To make the computation feasible, in Equation 7.10b we first
assume that the pdf p is constant insideMr. is is a common assumption made by the progressive
radiance estimation [41] and its asymptotic analysis [76]. It allows us to take p(xs−1→x) out of the
integral and replace it by the pdf of the actually sampled photon, p(xs−1→x∗s ), which is known. Second,
we make the common photon mapping assumption thatMr is a disk centered around xs with radius r
and area πr2. e accuracy of the resulting Pacc approximation reduces in areas of geometric variation
and when p is far from constant, e.g. when xs−1 has a very sharp glossy BSDF. Note, however, that the
approximation converges to the true value as the radius r approaches zero. Also note that for x∗s inside
Mr coming from a vertex xs−1 with a perfect specular BSDF (e.g. mirror or glass), the acceptance
probability is simply Pacc = 1 as the location of x∗s is sampled deterministically1.

e final vertex merging path pdf now reads:

p,s,t(x) = p,s,t(x)Pacc(x) = p,s,t(x)
∫
Mr

p(xs−1→x)dx

≈ p,s,t(x)
[
πr2 p(xs−1→x∗s )

]
.

(7.11a)

(7.11b)

is pdf formula describes the actual random events that occur during the path construction in photon
mapping. Importantly, the pdf is expressedw.r.t. the same product areameasure as any length-k regular
path sampled by bidirectional path tracing. e pdf of the photon vertex x∗s only appears as a part of the
approximation of the acceptance probability Pacc which itself is ‘unitless’2 and therefore has no impact

1Strictly speaking, connections to perfectly specular vertices are prohibited. However, by allowing approximate connec-
tions to the specular “parents” of nearby photons, photon mapping samples caustic paths while introducing little error.

2Considering that the unit of a vertex pdf is [m−2] and πr2 is in [m2], and so the units cancel out.
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on the measure. Note that this approximation makes the path pdf expression (Eq. 7.11b) symmetric,
in the sense that it includes the densities of all sampled vertices. us, deriving the pdf from the
eye tracing side, i.e. interpreting the radiance query vertex xs as the Russian roulette variable and the
photon vertex x∗s as a path vertex, would result in the same path pdf expression.

Note that for the path pdf derivation we only consider the probability for the photon vertex x∗s to land
inside the support of the kernel Kr. e actual shape of the kernel is still accounted for in the path
contribution Fk,s,r(x) (Eq. 7.8).

e above derivation also applies to volumetric photon mapping [64] where the radiance estimate
query vertex xs is in a scatteringmedium. e only difference in the final expression for the path pdf in
Equation 7.11b is the replacement of πr2 by 4

3 πr3, which accounts for the fact that the r-neighborhood
of xs is a sphere in that case.

e acceptance probability term πr2 p(xs−1→x∗s ) in the path pdf is useful for understanding the ef-
ficiency of photon mapping, as we will show in Section 7.2 below. e dependence of this term on
the radius r will also prove crucial for the good asymptotic performance of our progressive combined
algorithm in Section 7.4.

Regular space estimator

We now derive the primary vertex merging estimator for the reduced path integral (Eq. 7.7). We begin
with the measurement contribution function Fk,s,r(x) which is itself defined as an integral (Eq. 7.8). A
one-sample Monte Carlo estimate of that integral can be obtained using x∗s , i.e. the photon:

F̂k,s,r(x) =
fk,s,r(x∗)[

p(xs−1→x∗s )∫
Mr p(xs−1→x)dx

] , (7.12)

where we normalize p(xs−1→x∗s ) to obtain a valid pdf overMr, since only points x∗s inside this set
survive the Russian roulette that determines the acceptance of the path, as described above.

We can now construct the final pixel estimator using the path pdf p,s,t(x) from Equation 7.11a:

Î VMs,t,r (x) =
F̂k,s,r(x)

p,s,t(x)
=

fk,s,r(x∗)[
p(xs−1→x∗s )∫

Mr p(xs−1→x)dx

]
p,s,t(x)

=
fk,s,r(x∗)

p(xs−1→x∗s )p,s,t(x)
= Î PMk,s,r, (7.13)

which we denote by Î VMs,t,r , with k = s+ t − 2, in order to maintain notational compatibility with the
vertex connection estimator (Eq. 4.14). Note that the pdf normalization integral from Equation 7.12
cancels out above when multiplied by the VM path pdf (Eq. 7.11a) and thus it does not need to be
approximated. However, the practical approximation of this integral (Eq. 7.11b) will be required later
in our combined algorithm for the MIS weight evaluation of different path sampling techniques.

We have arrived at an expression for the photon mapping pixel estimator (Eq. 7.2). is result shows
that our reformulation of PM as a sampling technique for regular paths is compatible with the classic
view of PM because the final estimators for both views are identical. e importance of our formu-
lation is that it clearly separates the path pdf from the contribution function and is compatible with
Veach’s [142] path integral formulation (Eq. 3.27). is lays the ground for including vertex merging
into MIS estimators of the form given in Equation 4.3 and obtaining a meaningful combination.
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7.2 Efficiency of different path sampling techniques

Our vertex merging (VM) formulation provides new insight into the efficiency of the photonmapping
(PM) algorithm, which explains why PM performs differently than bidirectional path tracing (BPT) in
different lighting conditions. Our formulation provides the pdf for the individual light transport paths
sampled by PM. is allows us to analyze the relative efficiency of various path sampling techniques
by comparing their sampling probability densities for a given path. is tool has been long available to
BPTwhere, e.g., the power heuristic is based on the observation that a higher pdfmost oen results in a
lower-variance estimate [144]. Vertexmerging allows us to include photonmapping in the comparison
and reason about its efficiency as a Monte Carlo path sampling technique.

Note in Equation 7.11 that for any path the VM pdf is at most equal to that of vertex connection (VC).
is is due to the path acceptance probability Pacc ≤ 1 (Eq. 7.10). Consider the path in Figure 7.3b as
an example. For practical values of r, the merging disk oen spans a small solid angle as seen from
xs−1, depending on its distance to that vertex. If the vertex xs−1 is diffuse, Pacc is small, as it is equal to
the probability of sampling a random ray inside that solid angle. e resulting VM path pdf can then
be six or more orders of magnitude lower than the corresponding VC path pdf. It can be also shown
that if the merging disk area equals the light source area, then unidirectional sampling (US) and VM
can have almost equal pdfs. e intuition is that the probability of hitting the light would be roughly
the same as for hitting the merging disk.

Based on the above observations, we can conclude that VM (and thus photon mapping) is not an in-
trinsically more efficient sampling technique than the BPT techniques. However, the power of VM is
its computational efficiency, which comes from the evaluation of light transport along approximate tra-
jectories in the extended contribution function (Eq. 7.4). is enables the construction and evaluation
of a large number of full paths via simple conditional subpath concatenation that comes at the cost of
a single range search in a pre-built acceleration structure – the photon map. erefore, in cases where
the pdfs of other techniques (e.g. unidirectional sampling or vertex connection) are not much higher
than that of VM, the latter can result in a significantly lower-error estimate due to its efficient brute-
force variance reduction. emost prominent example for such cases are SDS paths, which in BPT can
be sampled only unidirectionally and oen with very low probability. e cheap variance reduction in
PM is made possible by reusing the same set of light subpaths for the eye subpaths of all pixels, thereby
amortizing the light subpath sampling cost over the evaluation of many estimators. We demonstrate
this in Figure 7.4 by comparing the image quality achieved byVMwithout andwith light subpath reuse
against unidirectional sampling. Without reuse, VM performs similarly to unidirectional path tracing
without next event estimation.

Note that we could also use the regular measurement contribution function (Eq. 3.31) in the VM esti-
mator in Equation 7.13. is would effectively turn the estimator into a variant of vertex connection,
since the exact connection throughput (Eq. 4.15) along the edge xs−1xs (Fig. 7.3b) would be evaluated,
which would also eliminate the blurring bias3. is, in fact, is precisely what has been done by Bekaert
et al. [3]. Unfortunately, this modification would also significantly decrease the computational effi-
ciency of the estimator, because a visibility ray would need to be traced along the connection segment
of each constructed full path. Moreover, caustics paths due to perfect specular vertices xs−1 would not
be captured as vertex connection can only construct DD path segments.

3Note that the estimator would still not become completely unbiased, because the pdf normalization integral∫
Mr

p(xs−1 →x)dx would not cancel out and would therefore have to be approximated, e.g. as in Equation 7.10.
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Figure 7.4: Vertex merging explains why photon mapping can be so much more efficient in handling
SDS light transport than bidirectional path tracing. It is not because it can find SDS paths with a higher
probability, but because it can efficiently reuse light subpaths across pixels. Without reuse, and with equal
light source and merging disk areas, photon mapping performs similarly to unidirectional sampling.

7.3 A combined light transport algorithm

In Section 7.1 we reformulated photonmapping (PM) as a path sampling technique, which we call ver-
tex merging. is formulation provides us with a clear definition of the light transport paths sampled
by the PM radiance estimate and their associated pdfs which are expressed w.r.t. the same measure as
in bidirectional path tracing (BPT). In this section we take advantage of this formulation to integrate
PM and BPT into a more robust light transport algorithm via multiple importance sampling (MIS).

Figure 7.5 illustrates the different types of path sampling techniques we have at our disposal. For a path
of length k, BPT offers up to k+2 techniques corresponding to performing the vertex connection along
different path edges. (Unidirectional sampling is the special case where one of the subpaths has zero
length.) Vertex merging adds up to k−1 more techniques which correspond to “merging” at different
interior vertices on the path4. We combine all these techniques into a unified rendering algorithm,
which we call vertex connection and merging (VCM).

e VCM formulation described below assumes a fixed merging radius r. Since our method includes
biased estimators, its combined estimator will also be biased for any merging radius r > 0. In Sec-
tion 7.4 we will present a progressive variant of the VCM algorithm that converges to the true value as
r approaches zero.

4is number does not include the two techniques that merge at the light source vertex and the eye vertex respectively,
since directly evaluating light emission or sensor sensitivity at such vertices is usually more efficient than merging.
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Figure 7.5: Illustration of different path sampling techniques, along with the corresponding pdf terms
associated with each vertex. For paths with k edges (here k = 3) bidirectional path tracing provides k+2
sampling techniques. (In practice we do not use the unidirectional (k+1,0) technique.) Vertex merging
brings k−1 new techniques corresponding to merging at the k−1 different interior path vertices.

7.3.1 Mathematical formulation

anks to the vertex merging formulation as a path sampling technique with an associated pdf, we can
now applyMIS to combine the different techniques from PM and BPT using the power heuristic. Note
that the different (s, t) vertex merging estimators use different contribution functions and thus have
different expected values. erefore, using the power heuristic to weight these estimators does not
guarantee minimization of the bias of the resulting combined estimator. Here we focus onminimizing
the variance only, and leave bias-aware combination as an interesting avenue for future work.

A VCMpixel estimator combines weighted contributionsC from vertex connection (VC) estimators
Î VCs,t (Eq. 4.14) and weighted contributionsC from vertex merging (VM) estimators Î VMs,t,r (Eq. 7.13):

Î VCM =C + C

=
1

n

n
∑
j=1

∑
s≥0,t≥0

w,s,t(xs,t, j) Î VCs,t (xs,t, j) +

1
n

n
∑
j=1

∑
s≥2,t≥2

w,s,t(xs,t, j) Î VMs,t,r (xs,t, j),

(7.14a)

(7.14b)

(7.14c)

which is an extended version of the BPT estimator (Eq. 4.19). It considers an eye subpath through the
pixel whose vertices are connected to the vertices of n light subpaths and potentially merged with
the vertices of n light subpaths. e subscript s, t corresponds to a path constructed from a light
subpath with s vertices and an eye subpath with t vertices. e power heuristic weight for technique
(v,s, t) has the usual form

wv,s,t(x) =
nβ

v · pβ
v,s,t(x)

∑
s′≥0,t′≥0

nβ
 · p

β
,s′, t′(x)+ ∑

s′≥2,t′≥2
nβ
 · p

β
,s′, t′(x)

, (7.15)

where v is either VC or VM. Note that the weight of a technique is amplified by the total number of
samples, i.e. light paths, it uses. e computational efficiency of vertex merging allows in practice n
to be much larger than n. Usually, n would be the total number of sampled light subpaths for
the image, while n = 1 as in BPT. As discussed in Section 7.2, subpath reuse and the consequent
brute-force variance reduction is the key to the efficiency of the vertex merging technique.
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1: I Renders progressively by averaging the results from N independent iterations
2: function PR(r1, α, N, image)
3: for i = 1 to N do
4: iterationImage = ZI()
5: ri = r1

√
iα−1

6: R(ri, iterationImage)
7: image = i−1

i image + 1
i iterationImage

8: end for
9: end function
10:
11: I Renders a single image with a given maximum vertex merging radius
12: function R(r)
13: I Stage 1: Light path sampling
14: lightPaths = TLP(pixelCount)
15: CTE(lightVertices)
16: BRSS(lightVertices)
17: I Stage 2: Eye path sampling and pixel estimator construction
18: for i = 1 to pixelCount do
19: eyeVertex = TR(SP())
20: while eyeVertex is valid do
21: I Unidirectional sampling (US)
22: if eyeVertex is emissive then
23: A(eyeVertex, US, r, i)
24: end if
25: I Vertex connection (VC)
26: for lightVertex in lightPaths[i] ∪ SLP() do
27: A(C(eyeVertex, lightVertex), VC, r, i)
28: end for
29: I Vertex merging (VM)
30: for lightVertex in RS(eyeVertex, r) do
31: A(M(eyeVertex, lightVertex), VM, r, i)
32: end for
33: eyeVertex = CRW(eyeVertex)
34: end while
35: end for
36: end function
37:
38: I Accumulates the pixel measurement estimate due to a given path
39: function A(path, technique, r, i)
40: contrib = MC(path, technique, r)
41: pdf = PDF(path, technique, r)
42: weight = PH(path, technique, pdf )
43: image[i] += weight * contrib / pdf
44: end function

Figure 7.6: Pseudocode for our progressive VCM rendering algorithm, which produces an image given
an initial vertex merging radius r1 and a radius reduction parameter α.

7.3.2 Algorithm

We now describe the practical implementation of our combined VCM estimator from Equation 7.14.
Since subpath sampling is expensive, it is desirable to amortize this effort over many primary estima-
tor evaluations. Veach’s [142] BPT implementation reuses subpaths by connecting every eye subpath
vertex to all vertices on one light subpath. Vertex merging lends itself to a substantially more efficient
path reuse scheme that allows to potentially merge every eye subpath vertex with the vertices of a large
number of pre-generated light subpaths. Tomaximize subpath reuse, our algorithm runs in two stages,
separating the sampling of the light and eye subpaths, similarly to photon mapping. An outline of the
algorithm is given in the R function in Figure 7.6.
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In the first stage, we trace a number of subpaths from the light sources, connect their vertices to the eye
and build a range search data structure over them (lines 14-16). In the second stage, we trace an eye
subpath for each pixel. Upon sampling an eye subpath vertex, we check if it lies on a light source and
accumulate the potential contribution (lines 22-24). We then connect that vertex to the vertices of one
of the pre-generated light subpaths, similarly to BPT (lines 26-28). To reduce sampling correlation we
follow Veach [142, Sec. 10.3.4.2] and do not store the first vertex of a light subpath and instead connect
every eye vertex to a new, randomly sampled point on a light source. Finally, we perform a range search
around the eye vertex tomergewith all light subpath vertices within its r-neighborhood (lines 30-32) as
in photonmapping. We construct an estimate for each generated full path, evaluate itsMISweight, and
finally accumulate the weighted estimate into the running pixel estimate (lines 39-44). Random walks
are terminated via Russian roulette or when a maximum subpath length is reached. Most of the terms
required to evaluate path contributions andMIS weights can be incrementally computed and stored at
the vertices of the subpaths as they are traced. We will discuss efficient practical implementations of
the algorithm in more detail in Chapter 8.

7.4 Achieving consistency

Apart form the usual variance in the form of noise, the images produced by our combined VCM algo-
rithm contain systematic error (i.e. bias) in the form of blur, which is inherited from vertex merging.
We now show how the algorithm can be made consistent by constructing a secondary pixel estima-
tor that progressively reduces the merging radius r, such that the variance and bias vanish in the limit,
much like in the progressive photonmapping variant of Knaus andZwicker [76] (see also Section 4.6.2).

e progressive variant of the VCM pixel estimator (Eq. 7.14) averages the results of N independent
rendering iterations:

Î VCMN =
1
N

N

∑
i=1

(C,i +C,i) , (7.16)

whereC,i andC,i are as in Equation 7.14, but use a new, independent set of light and eye subpaths
at each iteration i as well as a new merging radius ri. e key to making this estimator consistent is
to progressively reduce the merging radius as the iteration counter increases and to do so at a rate
that ensures that both the variance and the bias of the estimator vanish as N→∞. Below we devise
our radius reduction scheme and then we carry out an asymptotic analysis that proves the consistency
of the resulting estimator and derives its error convergence rate. e pseudocode of the progressive
algorithm is given in the PR function in Figure 7.6.

7.4.1 Progressive radius reduction

Our radius reduction scheme is based on the one used by Knaus and Zwicker [76] who compute the
the radius ri at iteration i in progressive photon mapping as

ri = r1

√√√√(i−1

∏
k=1

k+α
k

)
1
i
. (7.17)
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a) Asymptotic equivalence b) Rendering consistency c) Image di�erence
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Figure 7.7: A comparison of our new radius reduction scheme against that of Knaus and Zwicker [76],
carried out in a progressive photon mapping implementation for two α-parameter values. a) Log-log
plots of the radii computed by the two schemes. b) A relative RMS image difference log-log plot of the two
schemes, showing that their corresponding estimators converge to the reference solution for both α values.
c) A 128×-scaled difference image taken aer 2500 rendering iterations.

Here, r1 is the initial radius and α ∈ (0;1) is a user parameter. From Appendix E in their paper [76] it
follows that ri = O

(
i

α−1
2
)
. From this result we derive the simpler formula

ri = r1
√

iα−1. (7.18)

Our scheme is asymptotically equivalent to that of Knaus and Zwicker, but is simpler and easier to
compute for each iteration independently. We demonstrate the asymptotic equivalence of the two
schemes experimentally in Figure 7.7.

7.4.2 Asymptotic error analysis

An important advantage of BPT over PPM is its higher asymptotic error convergence rate, as we dis-
cussed Section 4.6.2. is rate measures how fast the progressive estimate approaches the true value as
the number of samples N (rendering iterations in our case) grows to infinity. BPT has a mean squared
error (MSE) convergence rate of O(N−1) [142]. In Section 4.6.2 we showed that the optimal MSE
rate of PPM is O(N−2/3), reached for α = 2/3. Since our progressive VCM estimator (Eq. 7.16) is a
weighted average of vertex connection (VC) and vertex merging (VM) estimators, its MSE rate must
necessarily lie somewhere between those of BPT and PPM.We show next that, in fact, the MSE of this
combined estimator converges asymptotically as fast as that of BPT for light transport paths that can
be sampled by BPT.

We first perform asymptotic simplifications w.r.t. the iteration counter i, using ri = O(
√

iα−1) from
our radius reduction scheme (Eq. 7.18). Knaus and Zwicker [76] have shown that PPM (and thus VM)
primary estimators have Var

[
Î VMs,t,r

]
= O(1/r2

i ) and Bias
[
Î VMs,t,r

]
= O(r2

i ). In contrast, the unbiased VC
estimators are independent of ri:

Var
[
Î VCs,t
]
= O(1) Bias

[
Î VCs,t
]
= 0

Var
[
Î VMs,t,r

]
= O

(
i1−α) Bias

[
Î VMs,t,r

]
= O

(
iα−1) . (7.19a)

(7.19b)

Furthermore, for any path x and any s and t , we have p,s,t(x) = O(1), as the VC path pdf is in-
dependent of ri. From Equation 7.11b it follows that p,s,t(x) = O(r2

i ) = O(iα−1). Substituting in
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Equation 7.15, and using α−1 < 0, we obtain:

w,s,t(x) =
O(1)

O(1)+O
(
iβ(α−1)

) = O(1)

w,s,t(x) =
O
(
iβ(α−1)

)
O(1)+O

(
iβ(α−1)

) = O
(

iβ(α−1)
)
.

(7.20a)

(7.20b)

Recall that β is the power heuristic exponent. Note that while the weights of the VC techniques are
asymptotically constant, the VM weights decrease as the iteration index i increases.

Variance

e variance of the progressive VCM estimator (Eq. 7.16) is

Var
[
Î VCMN

]
=

1
N2

N

∑
i=1

(Var[C,i]+Var[C,i]) . (7.21)

e sums over subpaths inC,i andC,i (Eq. 7.14) can be simplified away, as they are independent of i.
Var[C,i] and Var[C,i] now reduce to the variances of the primary VC and VM estimators (Eq. 7.19)
scaled by their corresponding weights (Eq. 7.20):

Var
[
Î VCMN

]
=

1
N2

N

∑
i=1

[
O(1)O(1)+O

(
i2β(α−1)

)
O
(
i1−α)]

=
1

N2

N

∑
i=1

O(1)+
1

N2

N

∑
i=1

O
(

i (2β−1)(α−1)
)

=
1

N2 N ·O(1)+
1

N2 N ·O
(

N(2β−1)(α−1)
)

= O
(
N−1)+O

(
N2β(α−1)−α

)
= O

(
N−1) ,

(7.22a)

(7.22b)

(7.22c)

(7.22d)

where in the last step we have assumed that 2β(α− 1)−α < −1. For practical values of β ≥ 1 this
inequality indeed holds, since α ∈ (0;1). is means that the variance of the combined estimator is
independent of α, and in fact its asymptotic rate is as high as that of BPT.

Bias

For the bias of the progressive VCM estimator we analogously obtain:

Bias
[
Î VCMN

]
=

1
N

N

∑
i=1

(Bias[C,i]+Bias[C,i])

=
1
N

N

∑
i=1

[
0+O

(
iβ(α−1)

)
O
(
iα−1)]= O

(
N(β+1)(α−1)

)
.

(7.23a)

(7.23b)

is means that the bias of the combined estimator diminishes faster than that of PPM for the same α
value, since β > 0 and also (α−1)< 0.
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Figure 7.8: Relative contributions of vertex connection (VC) and vertex merging (VM) at different VCM
rendering iterations. Note how VM’s contribution to the average estimate diminishes over time.

Mean squared error

Finally, for the MSE of the progressive VCM estimator (Eq. 7.16), which measures the total expected
error of the pixel estimate, we get:

MSE
[
Î VCMN

]
= Var

[
Î VCMN

]
+Bias2 [Î VCMN

]
= O(N−1)+O

(
N2(β+1)(α−1)

)
.

(7.24a)

(7.24b)

Forα≤ 2β+1
2β+2 , theMSEof the progressive estimator has amaximumconvergence rate ofO(N−1), which

is equal to that of unbiased estimators. When using the balance heuristic, i.e. β = 1, this optimal rate
is achieved for any α ∈ (0;0.75]. is means that our algorithm inherits the higher convergence rate
of bidirectional path tracing and is thus asymptotically faster than progressive photon mapping, whose
maximumMSE rate is only O(N−2/3). Moreover, this result is achieved for a wide range of values for
the parameter α.

7.4.3 Discussion

e intuition behind the high error convergence rate of our progressive VCM estimator is that the con-
tribution of vertexmerging (VM) to the running image estimate diminishes as the number of iterations
grows, as we demonstrate in Figure 7.8. As we progressively shrink the radius ri, we increase variance
of VM (Eq. 7.19b). e power heuristic automatically compensates for this by assigning a reciprocal
weight (Eq. 7.20b). e resulting algorithm is thus asymptotically equivalent to BPT. However, VM
brings efficient initial variance reduction, which helps to faster achieve acceptable image quality with
a finite number of samples, as we show in the following section.

We note that the above asymptotic result only holds for light transport paths that can be sampled by
the unbiased techniques of BPT. e contribution of paths that do not have a DD segment, starting
on a point source and ending on a pinhole camera [142], still converge at the slower rate of PPM. A
prominent example for such paths are caustics from a point or a directional light source seen through
a reflection or refraction.
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7.5 Results

We now present an empirical evaluation of our method. We provide a comprehensive set of results
for four scenes with different geometry and illumination configurations. For each scene, we provide
images and statistics taken aer 4 minutes of progressive rendering. ese results are assembled in
Figures 7.11–7.14 at the end of this section. (Readers of the electronic version are encouraged to zoom
in the document for closer inspection of the images.)

7.5.1 Setup

On each of the fours scenes in Figures 7.11–7.14 we compare seven rendering algorithms:

• our vertex connection and merging (VCM),
• path tracing (PT) [66],
• bidirectional path tracing (BPT) [143],
• stochastic progressive photon mapping (PPM) [38, 76],
• a combination of BPT and PPM via caustic path classification (BPT-PPM),
• Metropolis light transport [145] (MLT-Veach), and
• the primary-space MLT formulation of Kelemen et al. [72] (MLT-Kelemen).

e BPT-PPM algorithm handles caustic paths with PPM and all other paths with BPT. We classify a
path as caustic if it either contains an SDS segment or ends with an SDE segment (i.e. caustics directly
seen from the eye). Our PPM implementation closely follows Knaus and Zwicker [76] and handles
glossy BSDFs as described by Hachisuka and Jensen [38].

Rendering is performed progressively using one eye subpath per pixel per iteration with an image res-
olution of 1024×768. e numbers in parentheses for each algorithm denote the number of rendering
iterations, proportional to the total number of samples (full paths), taken in the given time. Each it-
eration starts by sampling the same number of light subpaths as there are image pixels (i.e. ≈ 786k).
All light subpaths are reused by PPM and by the vertex merging estimators in VCM for every pixel.
For vertex connections in BPT and VCM we assign one light subpath to each pixel, i.e. we set n = 1
and n ≈ 786k in the combined VCM estimator (Eq. 7.14). We set the radius reduction parameter
to α = 2/3 for both PPM and our VCM.

All measurements have been obtained on a 4-core Intel Core i7-860 2.8GHz processor machine. All
rendering algorithms have been implemented in the same CPU-based ray tracing framework, with the
exception of MLT-Kelemen andMLT-Veach for which we have used theMitsuba renderer [55]. To im-
prove the fairness of the comparison, we let Mitsuba run 3× longer than the algorithms implemented
in our slightly faster renderer.

For each scene we also show statistics from two image quality metrics: the structural similarity in-
dex [155] (SSIM) and the visual difference predictor of Mantiuk et al. [91] (HDR-VDP-2). We have
used the authors’ implementations with the recommended default parameters, andmeasured the statis-
tics against the reference images in the middle of each figure.



Chapter 7: Vertex connection and merging 93

7.5.2 Visual comparison

We compare unconverged images so that the noise differences are more noticeable. e reference
image for the M  scene was obtained using PPM. Our VCM algorithm was used for all
the other reference images, as none of the compared methods was able to provide noise-free results
in a reasonable amount of time. For each scene we also include color-coded relative error images
between the reference andBPT, PPM, and ourVCM, aswell as a color-coded image showing the relative
contributions of all vertex connection (VC) and vertex merging (VM) techniques to the VCM image.
eLR scene in Figure 7.11 shows an environmentwith different “illumination scales”. Most
of the diffuse illumination comes from far away (behind the camera), resulting in excessive noise in
PPM. e objects on the desk are lit by two local area light sources, which, in combination with the
mirror and the vases, produce intricate caustic paths that are difficult for BPT but well handled by PPM.
Our combined VCM algorithm captures all light interactions efficiently, automatically finding a good
balance between the many sampling techniques it has at its disposal.
e B scene in Figure 7.12 is a compact environment with moderately glossy tiles and highly
glossy chrome elements. It is illuminated by two small area lights, each almost fully enclosed in a
metal-glass shell. is configuration poses a challenge to both BPT and PPM. Our VCM handles the
entire illumination in the scene robustly, not only because adaptively combines the two methods but
also because it includes more sampling techniques: unlike PPM, VCM merges light vertices at every
eye subpath vertex. e benefit is clearly visible on the water tap.
e highly glossy C with specular chrome elements in Figure 7.13 is placed in a semi-open studio
environment which is illuminated by two rectangular light sources from above. e car interior is
additionally lit by a small rectangular light enclosed in a glass shell. is illumination, seen through
the windows, as well as the caustic reflections in the exterior, are difficult for BPT. On the other hand,
PPM performs poorly on the diffuse illumination and on the glossy inter-reflections, e.g. between the
tire and the fender. Our VCM renders a smooth, low-noise image.
e M  scene in Figure 7.14 is illuminated by metal-enclosed disc lights on the ceiling
whose light is focused by lenses attached to the lamp shades. is entirely caustic illumination, which
is additionally reflected in the balls, makes this scene well suited for PPM. Nevertheless, BPT handles
the directly visible caustics more efficiently than PPM via vertex connections to the eye, but then relies
on inefficient unidirectional sampling to find the reflections of those caustics. Even though VCM is
more than 2× slower per iteration than PPM, and thus slightly noisier on the reflected caustics, it once
again delivers the image with the highest overall quality.
While a combination of BPT and PPM based on path classification can oen produce better results
than either method alone, it can be far from optimal, as can be seen when comparing the BPT-PPM
images to the results achieved by our VCM algorithm. ese results show that such heuristic classi-
fication can be far from optimal in the presence of glossy objects as well as for short-range diffuse
inter-reflections between specular interactions (i.e. SDDS segments) when compared to VCM. We
also experimented with different path classification strategies, but none could deliver quality similar
to VCM, which employs more path sampling techniques than BPT and PPM combined and also oen
mixes vertex connection (VC) and vertex merging (VM) techniques with roughly equal weights. Such
equal-weight combinations appear in green in the color-coded relative VC-VM contribution images.
Even with a 3× larger time budget, the MLT algorithms cannot efficiently capture the complex light
interactions resulting from the various configurations of specular and glossy objects in our scenes.
When they occasionally manage to find a high-contribution path, their Metropolis samplers get stuck
exploring a small neighborhood region in the path space, which skews the result and produces spurious
image artifacts.
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a) VCM vs. PPM di�erence b) Error convergence plots
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Figure7.9: E rror convergence plots. a) A time plot of the RMS difference between the images produced by
our progressive VCM algorithm and PPM on the M  scene, along with a 64× amplified color-
coded difference image taken at the end of themeasurement. b)Mean absolute (L1) and rootmean squared
(L2) log-log reference difference plots for VCM, BPT, and PPM on the four scenes shown in Figures 7.11–
7.14. e oscillations in the plots are due to the “fireflies” caused by the low sampling probability of certain
high-contribution paths which increase the error of the produced image when found occasionally.

7.5.3 Image quality metrics

ebottom row in each of the Figures 7.11–7.14 shows the statistics obtained from the SSIM andHDR-
VDP-2 image quality metrics. Overall, our VCM algorithm gets highest visual quality scores from
both metrics. ere are some slight inconsistencies between the two metrics, due to SSIM operating
on gamma-corrected low dynamic range images and HDR-VDP-2 operating on the raw high dynamic
range images also taking into account the observer’s luminance adaptation. ese inconsistencies are
noticeable for PPM on the C scene and for BPT-PPM on the M  scene.

Running the image quality metrics on the MLT images would require separate reference images, due
to the slight differences in the materials between Mitsuba and our renderer. Unfortunately, we were
not able to obtain such references in reasonable time with the algorithms available in Mitsuba and
therefore do not provide these results.

7.5.4 Numerical convergence

To verify that ourVCMalgorithm converges to the correct solution, wemeasure the rootmean squared
(RMS) difference between the images produced by VCM and PPM on the M  scene. Fig-
ure 7.9a shows a plot of the steadily decreasing difference over time. is plot confirms that our algo-
rithm and PPM converge to the same solution, and the 64× amplified color-coded difference image
taken at the end of the measurement indicates that any remaining differences are due to random noise.

e slopes of the log-log reference error plots for BPT, PPM, and VCM in Figure 7.9b show that our
combined VCM algorithm converges to the reference solution at a higher rate than PPM. e oscil-
lations in the plots are due to the “fireflies” caused by low sampling probability for high contribution
paths which rapidly increase the error of the image when found occasionally. For BPT and PPM, these
paths mostly involve glossy inter-reflections; for VCM, these are highly glossy and perfectly specu-
lar (i.e. LS+E) unidirectionally sampled paths.
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Bidirectional path tracing (BPT) Our vertex connection and merging (VCM)

Figure 7.10: A scene dominated by glossy materials rendered with BPT and our progressive VCM in 11
hours. Even though VCM brings a noticeable improvement, the caustics on the glossy plot remain noisy
because none of the many techniques it employs can sample those paths with high enough probability.

7.6 Discussion

We conclude this chapter with a short summary of the parameters of our VCM algorithm and its lim-
itations. We also briefly discuss the alternative formulation of the method in the extended path space
by Hachisuka et al. [42].

Parameter choice
Two parameters that our progressive VCM algorithm inherits from PPM are the initial merging radius
r1 and its reduction rate parameter α. In our experiments, we globally set r1 to 0.01% − 0.07% of
the scene’s bounding box for both PPM and VCM. For a fair comparison against PPM, we also use
α = 2/3 for both methods. In general, for VCM we recommend setting r1 smaller than for PPM and
using α = 0.75. Such settings introduce less initial bias and maximize the variance convergence rate
of vertex merging and thus its efficiency too. In the following chapter we will discuss a better approach
for choosing the initial radius adaptively for every pixel.

Limitations
Our VCM algorithm inherits from PM the ability to approximately capture SDS paths due to point
light sources, which BPT cannot sample. However, since such paths can only be handled by vertex
merging, the error convergence rate of their contribution in our progressive VCM is as low as in PPM.
is limitation does not apply to the scenes shown in Figures 7.11–7.14, inwhichwe use only physically
plausible light sources with finite area. Slightly counter-intuitively, this means that, in the presence of
specular objects, area light sources are asymptotically more efficient to handle than point lights.

While our combined VCM algorithm is more robust than each of its ingredients alone, it does not
perform better on paths that are poorly handled by both BPT and PM. Such paths are, for example,
caustics falling on a highly glossy surface, as we show in Figure 7.10. Even though VCM improves over
BPT on this difficult scene, the caustics on the glossy kitchen plot remain noisy even aer 11 hours of
rendering. Efficient handling of such cases is a challenging avenue for future work.
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Finally, since our combined VCM estimator is an MIS estimator, it can be sub-optimal when some
of its sampling techniques are much more efficient than the rest. A prominent example are scenes
with diffuse and moderately glossy materials, which are well suited for path tracing with next event
estimation and/or bidirectional path tracing.

Extended path space formulation
Independently of our work, Hachisuka et al. [42] have also developed a method that combines BPT
and PM using multiple importance sampling (MIS). Similarly to our approach, they interpret photon
radiance estimation as a path sampling technique and use MIS to combine techniques from PM and
BPT. However, as a major difference to our approach, their formulation considers the extended path
space (Sec. 7.1.1) and they augment the BPT techniques with virtual random perturbations of path
vertices in order to express the vertex connection pdfs in this higher-dimensional space. Interestingly,
this formulation yields a combined estimator that is equivalent to our VCM estimator (Eq. 7.14). We
believe that this result confirms the validity of both approaches.

Hachisuka et al. [42] also derive provably good MIS weights that account for the bias in some of the
techniques. Unfortunately, these weights are difficult to use in practice as they require computing an
accurate estimate for the bias of the photon mapping estimator. Our derivations instead focus on the
optimal asymptotic behavior of the progressive combined estimator (Eq. 7.16).
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Figure 7.11: A comparison of seven rendering algorithms on the L  scene, described in Sec-
tion 7.5.1. We also include error images and statistics from two image quality metrics.
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Figure 7.12: A comparison of seven rendering algorithms on the B scene, described in Sec-
tion 7.5.1. We also include error images and statistics from two image quality metrics.
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Figure 7.13: A comparison of seven rendering algorithms on the C scene, described in Section 7.5.1.
We also include error images and statistics from two image quality metrics.



100 Section 7.6: Discussion

VM

VC

1

8

0
VCM relative errorBPT relative error PPM relative error

Structural similarity (SSIM) index HDR Visual Di�erence Predictor 2 (HDR-VDP-2)
VC/VM contributions in VCM

BPT (0.90) Our VCM (0.97)

PT (0.00)

PPM (0.91)

BPT-PPM (0.93)

Probability of detection
10

Similarity index
10

MLT-Kelemen (12 min) MLT-Veach (12 min)

BPT-PPM path classi�cation (59 iter.)PT (209 iterations)

PPM (116 iterations)

BPT (5.5) Our VCM (92.6)

PT (1.5)

PPM (92.4)

BPT-PPM (90.8)

BPT (64 iterations) Our VCM (51 iterations)

Reference

Figure 7.14: A comparison of seven rendering algorithms on the M  scene, described in
Section 7.5.1. We also include error images and statistics from two image quality metrics.
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Implementing Vertex
Connection and Merging 8
Bidirectional path tracing (BPT) and photon mapping (PM) are arguably the two most versatile phys-
ically based rendering algorithms available today. It has been long acknowledged that these two meth-
ods complement each other in terms of the types of light transport effects they can efficiently capture.
e vertex connection andmerging (VCM) algorithmwe presented in Chapter 7 aims to leverage the ad-
vantages of both methods by adaptively combining vertex connection techniques from BPT and vertex
merging techniques from PM via multiple importance sampling. We showed that this unified algo-
rithm can efficiently handle a wide range of lighting effects and can be substantially more robust than
either BPT or PM alone, while preserving the higher asymptotic performance of BPT.

In Chapter 7 we focused on the formal derivation, asymptotic analysis, and evaluation of the VCM
algorithm. In this chapter we address some important details in its practical implementation, most no-
tably the evaluation of the multiple importance sampling (MIS) weights in the combined pixel estima-
tor (Eq. 7.14). Indeed, correctly implementing MIS is already challenging in BPT, and VCM increases
the complexity by including even more sampling techniques. Moreover, the cheap light subpath reuse
with vertex merging allows for efficiently constructing large amounts of full paths for each pixel, which
in turn significantly increases the impact of path weight evaluation on the overall performance. e
traditional BPT-style MIS weight computation [142, Sec. 10.2], which iterates over all vertices of every
full path, can therefore become inefficient. We address this problem by devising a method to accumu-
late and store partial weights at the vertices of light and eye subpaths as they are sampled during the
random walks. is allows us to quickly evaluate the weight for any full path by only using data that
is readily available at the two vertices that are connected or merged. e MIS weight evaluation then
becomes as efficient as the evaluation of the subpath sampling throughput which already benefits from
such an accumulation scheme (Sec. 4.2.1). Our method is similar to the one independently developed
by van Antwerpen [141] for BPT but in addition accounts for vertex merging techniques.

In addition to the efficient MIS weight evaluation, we discuss how to handle emission and scatter-
ing distributions whose definitions involve delta distributions. We also present an alternative, more
memory-efficient implementation of the VCM algorithm and describe a few extensions such as using
a different merging radius for each light transport path, as well as spectral and motion blur rendering.

8.1 Notation

e technical nature of the content in this chapter requires the extensive use of mathematical notation.
In this section, we review our path and subpath notation and introduce a shorthand path vertex pdf
notation. Table 8.1 summarizes the most commonly used symbols in this chapter.
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Symbol Description
x = x0 . . .xk Full length-k path: vertex x0 is on a light source, xk is on the eye lens

y = y0 . . .ys−1 Light subpath with first vertex y0 ≡ x0 on a light
z = z0 . . .zt−1 Eye subpath with first vertex z0 ≡ xk on the eye lens
−→pi,←−pi Forward (i.e. actual) and reverse area pdfs for subpath vertex i

(−→pi=
−→pω,i
−→g i and←−pi=

←−pω,i
←−g i
)

−→pω,i,←−pω,i Forward and reverse solid angle pdfs for subpath vertex i
−→g i,←−g i Forward and reverse pdf conversion factors from solid angle measure to area measure

p,s,t , p,s Vertex connection (VC) pdf for a length-k path with s light vertices and t = k+1−s eye vertices
p,s,t , p,s Vertex merging (VM) pdf for a length-k path with s light vertices and t = k+2−s eye vertices

n, n Number of samples (i.e. paths) used for vertex connection and vertex merging, respectively
η = n

n πr2 Shorthand for common constants that appear in the MIS path weights

Table 8.1: A list of some commonly used symbols in this chapter. Figure 8.1 illustrates the redundant
(sub)path notation and the vertex pdf notation.

Paths
In the path integral formulation of light transport, which we introduced in Section 3.5.4, a path x =
x0 . . .xk of length k (edges) is a tuple of k+1 vertices, where the vertex x0 is on a light source and xk is
on the eye lens. A Monte Carlo estimator for the path integral (Eq. 3.27) is constructed by sampling a
random path x and dividing its measurement contribution f (x) by its probability density p(x).

As we discussed in Section 4.2, Monte Carlo global illumination methods sample light transport paths
by tracing random walks in scene. Bidirectional methods construct a full path x by joining the end-
points of one subpath traced from a light source and another one traced from the eye. We denote a
light subpath with s vertices by y = y0 . . .ys−1 and an eye subpath with t vertices by z = z0 . . .zt−1.
Here, the vertex y0 is a point on a light source, and z0 is on the eye lens. ese notations, illustrated
in Figure 8.1, were already introduced in Section 4.2.1 but we repeat them here for reference. ey
are redundant with the x-notation but conveniently index the vertices in the order of their generation.
e forward and reverse vertex pdf notation, defined for y below, also applies to z, and this symmetry
will later allow us to apply the same MIS weight derivations to both light and eye subpaths.

Forward vertex pdfs
e probability density function (pdf) of a (sub)path describes the joint distribution of its vertices via
a chain of marginal conditional pdfs. We denote the pdf of subpath vertex i by

−→pi(y) =

{
p(y0) if i = 0,
−→pω,i(y)−→g i(y) otherwise,

(8.1)

with
−→pω,i(y) =

{
p(ωy0y1 |y0) if i = 1,
p(ωyi−1yi |yi−1,ωyi−2yi−1) if i > 1

−→g i(y) =
|cosθi,i−1|
∥yi−yi−1∥2 .

(8.2)

(8.3)

Above, p(.) denotes an unconditional vertex pdf expressed w.r.t. the area measure, e.g. p(y0) for sam-
pling y0 on a light source. e subscript ω denotes a solid angle pdf. e factor −→g i converts the pdf
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→p0(z)

(s= 0, t = 4)

(s= 2, t = 2)

(s= 3, t = 2)

light subpath vertex
eye subpath vertex

Vertex connection

Vertex connection

Vertex merging

z0
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→p1(z)
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→p1(z)
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→p3(z)

→p0(y)
→p1(y)
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y1

→p0(y)
→p1(y)

→p2(y)πr2

Figure8.1: Illustration of the vertex connection (VC) and vertexmerging (VM) path sampling techniques,
along with their associated vertex pdfs. Note that the different VC andVM techniques for sampling length-
k paths can be uniquely identified by the number of light subpath vertices s. Note also that in this chapter
we consider the “photon” vertex (y2 in this example) as part of the light subpath.

measure from solid angle to area, with θi,i−1 being the angle between the surface normal at yi and the
vector −−−→yiyi−1. We call −→pi forward vertex pdfs (w.r.t. the random walk direction). With this notation,
the (joint) pdf of a subpath y with s vertices is:

ps−1(y) = p(y0, . . . ,ys−1) =
s−1

∏
i=0

−→pi(y), (8.4)

which is similar to the subpath pdf notation we defined in Equation 4.5 but is more concise. All these
definitions apply without modification to eye subpaths z as well.

Reverse vertex pdfs
Analogously to the forward vertex pdf notation, we define a reverse notation:

←−pi(y) =

{
p(yk) if i = k,
←−pω,i(y)←−g i(y) otherwise,

(8.5)

with
←−pω,i(y) =

{
p(ωykyk−1 |yk) if i = k−1,
p(ωyi+1yi |yi+1,ωyi+2yi+1) if i < k−1

←−g i(y) =
|cosθi,i+1|
∥yi−yi+1∥2 .

(8.6)

(8.7)

e arrows make it easier to distinguish between the actual sampling pdf of a vertex, −→pi(y), and its
“reverse” pdf,←−pi(y). at is, the latter denotes the probability density for sampling yi in a direction
opposite to that of the random walk. In Equation 8.5, for example, yk is a light subpath vertex that has
landed on the eye lens, and←−pk(y)≡ p(yk)denotes the probability density for sampling that same vertex
on the lens using a different technique, e.g. to start an eye subpath. ese reverse pdfs are required
for evaluating the multiple importance sampling path weights in the VCM pixel estimator (Eq. 7.14).
Recall that all this notation applies to eye subpaths z as well.
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8.2 Recursive path weight evaluation

e heart of our VCM algorithm is the multiple importance sampling (MIS) pixel estimator that com-
bines primary vertex connection estimators Î VC and primary vertex merging estimators Î VM:

Î VCM =
1

n

n
∑
j=1

∑
s≥0,t≥0

w,s,t(xs,t, j) Î VCs,t (xs,t, j) +

1
n

n
∑
j=1

∑
s≥2,t≥2

w,s,t(xs,t, j) Î VMs,t,r (xs,t, j).

(8.8a)

(8.8b)

is estimator considers one eye subpath through the corresponding pixel, whose vertices are con-
nected to the vertices of n light subpaths and potentially merged with the vertices of n light sub-
paths. Our implementation uses n= 1, andwe set n to the total number of sampled light subpaths,
which for symmetry reasons we choose to be equal to the total number of eye subpaths, i.e. the image
resolution.

e power heuristic weight for technique (v,s, t) in Equation 7.15 can be written as:

wv,s,t(x) =
1

nβ


nβ
v

∑
s′≥0, t′≥0

pβ
,s′,t′(x)

pβ
v,s,t(x)

+
nβ

nβ

v
∑

s′≥2, t′≥2

pβ
,s′,t′(x)

pβ
v,s,t(x)

,
(8.9)

which takes into account all possible ways of sampling the path x via vertex connection or merging.
Here, v is either VC or VM, and the path pdfs for the VC and VM technique families are (see Equa-
tions 4.16 and 7.11, respectively)

p,s,t(x) = ps−1(y)pt−1(z)

p,s,t(x) = ps−1(y)pt−1(z)πr2,

(8.10a)
(8.10b)

where r is the vertex merging radius. It is important to note at this point that, unlike Chapter 7, in
this chapter we adhere to the more intuitive definition of vertex merging which considers the “photon”
vertex to be the endpoint of the light subpath y, as this view conveniently aligns with the actual imple-
mentation. With this interpretation, a full VM path (called extended path in Chapter 7) constructed
by a (VM,s, t) technique is one segment (edge) shorter than a VC path constructed by a (VC,s, t)
technique, as illustrated in Figure 8.1.

enaïveway to evaluate theweightwv,s,t(x) is to independently compute each path pdf that appears in
the denominator in Equation 8.9. For bidirectional path tracing, which uses the same formula, minus
the VM sum on the right, Veach [142, p. 306] developed a more efficient scheme by exploiting the fact
that many of the terms in the pdf fractions cancel out when the subpath pdfs in Equation 8.10 are
expanded into chains of vertex pdfs (Eq. 8.4). He computes the entire VC sum by looping once over
the light and eye subpath vertices and accumulating the sum of pdf fractions.

While Veach’s scheme can be easily extended to vertex merging, its efficiency is sub-optimal. First,
it makes many redundant computations, since every time a subpath is reused in a different primary
estimator all pdf terms associated with its vertices are re-evaluated. Moreover, the computation of
these terms requires accessing all subpath vertices inmemory. Weight evaluation can therefore become
a significant overhead for vertex merging, which relies heavily on subpath reuse and constructs a large
number of full paths with a single range search query.
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We now note that the unweighted contribution of a path is in fact computed efficiently in both BPT
and PM, and thus also in VCM.is is achieved by computing cumulative subpath throughputs during
the random walks (Eq. 4.6). Upon connecting or merging two vertices, the corresponding primary
estimate for the resulting full path is quickly evaluated using the sampling throughputs stored at those
vertices. We set out to derive a similar scheme for the path weight evaluation. We go about this by
reformulating the two sums in Equation 8.9 as recursive quantities that can be incrementally computed
and cached at the subpath vertices during the random walks.

At this point, readers not interested in the formal derivation of our MIS weight evaluation scheme can
skip to Section 8.3. ere we discuss its practical implementation, describing the quantities stored at
each subpath vertex and how to compute the full path weight from this data.

8.2.1 Partial subpath weights

In order to keep the notation succinct, in the following we will consider paths x of length k and will
oen omit the redundant subscript t denoting the number of eye subpath vertices. Also, without loss
of generality, we will assume β = 1, i.e. that the balance heuristic is used. We now rewrite Equation 8.9
more compactly:

wv,s,t =
1

n
nv

k+1

∑
j=0

p, j
pv,s

+
n
nv

k

∑
j=2

p, j

pv,s

,
(8.11)

where pv, j is the pdf for sampling a length-k path using a light subpathwith j vertices, and v∈{VC,VM}.
We now write the weight for a length-k path in the form

wv,s,t =
1

w light
v,s +1+w eye

v,s
, (8.12)

where we have split and regrouped the sums in Equation 8.11 to iterate over the light and eye subpath
vertices, respectively, and have extracted the term pv,s/pv,s = 1 from the appropriate sum. e partial
subpath weights w light

v,s and w eye
v,s have slightly different definitions depending on the value of v.

Vertex connection. For paths sampled with v = VC, in the weight w,s,t we have:

w light
,s =

s−1

∑
j=0

p, j
p,s

+
n
n

s

∑
j=2

p, j

p,s

w eye
,s =

k+1

∑
j=s+1

p, j
p,s

+
n
n

k

∑
j=s+1

p, j

p,s
.

(8.13)

(8.14)

e sums on the le in Equations 8.13 and 8.14 are obtained by splitting the le sum in Equation 8.11
in two (and extracting the term p,s/p,s = 1), and the sums on the right are obtained by splitting
the right sum in Equation 8.11.

Vertex merging. Analogously, for paths sampled with v = VM, in the weight w,s,t we have:

w light
,s =

n
n

s−1

∑
j=0

p, j
p,s

+
s−1

∑
j=2

p, j

p,s

w eye
,s =

n
n

k+1

∑
j=s

p, j
p,s

+
k

∑
j=s+1

p, j

p,s
.

(8.15)

(8.16)
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8.2.2 Recursive formulation

Wenow reformulate the path weight fromEquation 8.12 in a form that is suitable for evaluation in a for-
wardmanner, i.e. in the order of the generation of the subpath vertices, instead of iterating backwards
from the subpath endpoints as suggested by Veach [142, p. 306]. We write the weight as

wv,s,t =
1

wv,s−1(y)+1+wv,t−1(z)
, (8.17)

where wv,s−1(y) and wv,t−1(z) are recursive formulations of the partial light and eye subpath weights
w light

v,s and w eye
v,s from the previous subsection. ese two recursive quantities can be evaluated incre-

mentally as the subpaths y and z are traced, so they can be readily available for summing up when we
connect or merge two vertices. We next derive the two quantities separately for v = VC and v = VM.

In the following, we will use a shorthand notation to group all parameters and constants that appear
in the path weight into a single term:

η =
n
n

πr2. (8.18)

Vertex connection
Using the path pdf definitions in Equation 8.10, we follow Veach [142, p. 306] to expand the pdf frac-
tions in Equation 8.13:

w light
,s =

s−1

∑
j=0

s−1

∏
i= j

←−pi(y)
−→pi(y)

+ η
s

∑
j=2

←−p j−1(y)
s−1

∏
i= j

←−pi(y)
−→pi(y)

, (8.19)

where we use the forward and reverse vertex pdf notations from Equations 8.1 and 8.5. Next, we
reformulate the two sums above as recursive quantities (omitting the y arguments for readability):

w′,0 =
←−p0
−→p0

w′′,0 = 0

w′,i =
←−pi
−→pi

(
1 + w′,i−1

)
w′′,i =

←−pi

(
1+

1
−→pi

w′′,i−1

)
,

(8.20a)

(8.20b)

and write the partial light subpath weight in (Eq. 8.19) as

w light
,s = w′,s−1(y)+ηw′′,s−1(y). (8.21)

We can further combinew′,i andw′′,i to formulate Equation 8.21 as a single recursive quantity (again
omitting the y arguments):

w,0 =
←−p0
−→p0

w,i =←−pi

(
η +

1
−→pi

+
1
−→pi

w,i−1

) (8.22a)

(8.22b)

Finally, thanks to the z notation (Fig. 8.1) which indexes path vertices starting from the eye, the above
recursive formula also applies to the partial eye subpath weight in Equation 8.14: w eye

,s = w,t−1(z).
Plugging w,s−1(y) and w,t−1(z) into Equation 8.17 completes the definition of w,s,t .



Chapter 8: Implementing vertex connection and merging 107

Vertex merging
We now expand equation Equation 8.15 as above:

w light
,s =

1
η

1
−→ps−1(y)

s−1

∑
j=0

s−2

∏
i= j

←−pi(y)
−→pi(y)

+
s−1

∑
j=2

s−1

∏
i= j

←−pi−1(y)
−→pi(y)

. (8.23)

Using the same methodology as for vertex connection above, we obtain:

w,1 =
1
−→p1

(
1

η
+←−p0

1
η−→p0

)
w,i =

1
−→pi

(
1

η
+←−pi−1 +

←−pi−1w,i−1

) (8.24a)

(8.24b)

Again, using the z notation we can also apply the above formula to formulate the partial eye sub-
path weight in Equation 8.16 as a recursive quantity: w eye

,s = w,t−1(z). Plugging w,s−1(y) and
w,t−1(z) into Equation 8.17 completes the definition of w,s,t . Recall that in Equation 8.17 we have
t = k+1− s for paths sampled with VC and t = k+2− s for paths sampled with VM.

8.3 Practical implementation

Equations 8.22 and 8.24 define the partial weight quantities w,i and w,i associated with the sub-
path vertices. Ideally, we want to cache these quantities at the subpath vertices as we trace a random
walk. en, upon connecting or merging any two vertices, the full weight would be obtained by simply
summing up their respective w,i or w,i quantities, as postulated by Equation 8.17. Unfortunately,
this scheme cannot be directly implemented, since w,i and w,i require reverse probabilities that
are not yet known at the point of sampling subpath vertex i. Specifically,←−pi(y) depends on the next
two vertices via pσ(yi|yi+1,yi+2). Similarly,←−pi−1(y) depends on the next subpath vertex, yi+1.

A practical implementation of the weight evaluation scheme from Section 8.2 is made possible by split-
ting up the computation of the recursive quantities w,i and w,i. To this end, at vertex i we cache
only (and all) the terms that depend on the subpath vertices sampled up to and including i. We extract
three new quantities, di , di , and di , from w,i and w,i, postponing the evaluation of the re-
maining terms until we have sampled the next subpath vertex i+1 or connected/merged vertex i with
another vertex:

w,i =←−pi

(
η+

1
−→pi︸︷︷︸

di

+
1
−→pi

w,i−1︸ ︷︷ ︸
←−pω,i−1 di

)

w,i =
1
−→pi︸︷︷︸

di

1
η

+←−pω,i−1

←−g i−1
−→pi

(
1+w,i−1

)
︸ ︷︷ ︸

di

.

(8.25)

(8.26)

Here we have used the expansion←−pi−1 =
←−pω,i−1

←−g i−1, with←−pω,i−1 being the reverse solid angle pdf
for subpath vertex i−1. Note that di appears in the weight for paths sampled with both VC andVM,
whereas di and di are specific to the VC and VMweights respectively. Also, recall from Section 8.2
that the recursive formulas above apply to both light subpaths y and eye subpaths z.
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8.3.1 Subpath vertex data

As we trace a subpath, we update and store the quantities di , di and di at each vertex. e
formulas for these quantities are the same for all subpath vertices, with the only exception for y1 and
z1. e reason is that we do not consider path sampling techniques with zero eye subpath vertices, as
the probability of hitting the eye lens is usually very low (or even zero when a pinhole camera model
is used). Note also that we do not store the vertices y0 and z0, since choosing a new point on a light
source or the eye lens for each connection reduces the sampling correlation and is usually cheap. e
precise data we store at the subpath vertices is

y1 : d1 =
pconnect0
ptrace0

1
−→p1

z1 : d1 =
pconnect0
ptrace0

nlight
−→p1

d1 =
←−g0

ptrace0
−→p1

d1 = 0

d1 =
←−g0

ptrace0
−→p1η

d1 = 0

(8.27)

(8.28)

(8.29)

yi, zi : di =
1
−→pi

di =
←−g i−1
−→pi

(
η+ di−1 +←−pω,i−2 di−1

)
di =

←−g i−1
−→pi

(
1 +

di−1

η
+←−pω,i−2 di−1

)
.

(8.30)

(8.31)

(8.32)

In the equations above, the different vertex pdfs pconnect0 and ptrace0 account for the fact that different
techniques may be used for sampling a vertex on a light source or the eye lens, depending on whether
this vertex will be connected to a subpath or used to start a new subpath, respectively. e total num-
ber of light subpaths, nlight, is the number of samples the eye connection technique (VC,s,1) takes.
We have obtained the expressions for di and di by recursively expanding w,i−1 and w,i−1 in
Equations 8.25 and 8.26. Note that the three floating point quantities di , di , and di are the only
MIS weight related data that we need to store with the subpath vertices.

8.3.2 Full path weight

Recall that the weight for a full path constructed from a light subpath y with s vertices and an eye
subpath z with t vertices is

wv,s,t =
1

wv,s−1(y)+1+wv,t−1(z)
. (8.33)

We now show how to compute wv,s−1(y) and wv,t−1(z) from the three vertex quantities defined above,
depending on the sampling technique v ∈ {VC,VM}. e general-case formulas for VC and VM
below (i.e. for s>1 and t >1) follow directly from Equations 8.25 and 8.26. Due to the symmetry in
the notation for light and eye subpaths, these general-case formulas are the same for y and z.



Chapter 8: Implementing vertex connection and merging 109

Vertex merging (s > 1, t > 1). A path is constructed by merging the light subpath vertex ys−1 with
the eye subpath vertex zt−1:

ys−2 zt−2

ys−1 zt−1

w,s−1(y) =
ds−1

η
+←−pω,s−2 ds−1

w,t−1(z) =
dt−1

η
+←−pω,t−2 dt−1.

(8.34)

(8.35)

Vertex connection (s > 1, t > 1). A path is constructed by connecting the light subpath vertex ys−1
to the eye subpath vertex zt−1:

ys−2

ys−1 zt−1

zt−2
w,s−1(y) =←−ps−1

(
η+ds−1 +←−pω,s−2 ds−1

)
w,t−1(z) =←−pt−1

(
η+dt−1 +←−pω,t−2 dt−1

)
.

(8.36)

(8.37)

Vertex connection (s = 0). e eye subpath vertex zt−1 is sampled on a light source, i.e. the light
subpath has zero vertices: . . .

zt−1
zt−2

w,s−1(y) = 0

w,t−1(z) = pconnectt−1 dt−1 + ptracet−1
←−pω,t−2 dt−1.

(8.38)
(8.39)

Vertex connection (s = 1). e eye subpath vertex zt−1 is connected to vertex y0 on a light source
(a.k.a. next event estimation):

y0
zt−1

zt−2

w,0(y) =
←−p0(y)

pconnect0 (y)

w,t−1(z) =
ptrace0 (y)

pconnect0 (y)
←−pt−1

(
η+dt−1 +←−pω,t−2 dt−1

)
.

(8.40)

(8.41)

Vertex connection (t = 1). e light subpath vertex ys−1 is connected to vertex z0 on the eye lens
(a.k.a. eye/camera projection):

ys−1

z0
ys−2

w,s−1(y) =
ptrace0 (z)

pconnect0 (z)

←−ps−1

nlight

(
η+ds−1 +←−pω,s−2 ds−1

)
w,0(z) = 0.

(8.42)

(8.43)

Recall that nlight is the total number of light subpaths, which is the number of samples this eye connec-
tion technique takes.

8.3.3 Reverse pdf evaluation

y0
y1

z0z0
z1

pdf evaluation(VM,2,2)

 sampled path(VC,0,3) (VM,2,2) sampled path

pdf evaluation(VC,0,3)

z1
z2

Figure 8.2: Reverse pdf evaluation.

Having constructed a path by a VC technique,
evaluating the pdf for sampling that path by a
VM technique is straightforward, as VM can
sample all light transport paths that VC can sam-
ple. is is illustrated in Figure 8.2 le, where the
“merged” vertices coincide at z1.

e opposite case, shown in Figure 8.2 right, is
slightly more complicated, as each different VM technique evaluates light transport along approximate
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trajectories that in principle cannot be exactly sampled by any other VC or VM technique. Neverthe-
less, given a path sampled by a certain VM technique, we can evaluate reverse pdfs for the vertices
around the merging location by respecting the edges of the sampled path. For the case considered in
Figure 8.2 right, the unidirectional (VC,0,3) path pdf includes the reverse vertex pdf←−p0(y), which
in turn includes the pdf for sampling the direction toward vertex y0 (Eq. 8.6). We evaluate this pdf as
p(ωy1y0 |z1,ωz0z1) using the actually sampled directions by the (VM,2,2) technique, just like BSDFs
are evaluated in the VM measurement contribution function (Eq. 7.4). To evaluate the pdfs of VC
techniques that make an actual subpath connection we simply disregard one of the “merged” vertices,
i.e. we evaluate p,1,2 =−→p0(y)−→p0(z)−→p1(z) and p,2,1 =−→p0(y)−→p1(y)−→p0(z).

8.4 Special cases

In this section we discuss how to handle infinite light sources and orthographic cameras with multiple
importance sampling as well as how to handle with BSDFs and light sources whose definitions involve
delta distributions. We also show how to apply our recursive MIS weight evaluation scheme to bidirec-
tional path tracing and bidirectional photonmapping, which are special cases of our vertex connection
and merging method.

8.4.1 Infinite light sources

Light sources that are located very (or even infinitely) far away from the rest of the scene geometry
are usually not defined via emitting surfaces but via directional incident radiance distributions at the
scene surfaces. is definition prevents the straightforward use of infinite lights in methods like VCM
defined in the path integral framework (Sec. 3.5.4) which is based on area/volume integration.

y0

y1y1

y0

y⊥
1

light subpath vertex
light subpath direction

a) Approximation b) Solid angle sampling

Figure 8.3: Instead of approximating infinite
lights via emissive spheres (a), we directly handle
them via solid angle integration and derive the
corresponding path pdfs for use in MIS (b).

A common approach to handle infinite lights in
bidirectional path tracing is to turn them into fi-
nite area lights. is is done bymapping their direc-
tional emission onto a large sphere that surrounds
the scene and emits inwards diffusely (with the to-
tal power scaled appropriately). While such spher-
ical area lights are naturally handled by the path
integral, their emission distribution only approxi-
mates that of the original infinite light. Enlarging
the sphere improves the approximation accuracy
but can cause numerical issues due to the large dis-
tance between the light and the scene and due to
the small solid angles involved in the emission im-
portance sampling for light subpaths (Fig. 8.3a).

e above problems can be avoided by handling
infinite lights in their original formulation, i.e. via
solid angle integration. Paths starting on an infinite
light source now have the form x = _x0x1 . . .xk, where we have replaced the point x0 with a direction_x0. We start a light subpath y by first sampling _y0 (deterministically for classical directional lights).
We then sample a point y⊥

1 on a plane perpendicular to _y0 and project it onto the scene along _y0 via
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ray tracing to obtain y1 (see Figure 8.3b and also Pharr and Humphreys [109, p. 714]). We now write
the forward and reverse pdfs corresponding to these sampling decisions. We preserve the pdf notation
introduced in Section 8.1 but accommodate for the changes in the path geometry:
• pconnect0 (y)= pconnectσ (_y0) and ptrace0 (y)= ptraceσ (_y0) are expressed w.r.t. the solid angle measure,
• ←−p0(y) =←−pω,0(y) = pσ(

_y0|y1,ωy2,y1) is now a solid angle probability density as well,
• ←−g0(y) = 1, as no pdf measure conversion is needed (a consequence of←−p0(y) =←−pω,0(y) above),
• −→p1(y) = p(y⊥

1 )cosθ1→0, where θ1→0 is now the angle between the normal at y1 and−_y0.
e pdf modifications for _zk ≡ _y0 and zk−1 ≡ y1 are symmetric.

8.4.2 Orthographic cameras

Orthographic cameras are the equivalent of infinite directional lights on the eye side. When such a
camera model is used, the same modifications we made to the path geometry and the subpath pdfs for
infinite lights apply on the eye side as well. at is, the last path vertex xk is replaced by a direction _xk,
and the pdf modifications above apply with _z0 ≡ _yk.

8.4.3 Point and directional light sources

Omnidirectional and spot lights have infinitely small areas, and directional lights emit in a single direc-
tion. Such light sources cannot be hit by random rays, as their emission is defined via a delta distribu-
tion, i.e. we have p,0,k+1 = 0. In order to account for this correctly in the MIS path weights, we need
to modify the cumulative weight quantities d1 associated with the light subpath vertex y1. With this
change, the three vertex quantities at y1 become identical to the ones associated with the eye subpath
vertex z1

1 (Sec. 8.3.1), minus the nlight factor in d1 :

y1 : d1 =
pconnect0
ptrace0

1
−→p1

d1 = 0

d1 = 0.

(8.44)

(8.45)

(8.46)

In addition, Equation 8.40 simplifies to w,0(y) = 0. Even though sampling such lights is determin-
istic as emission is defined only at a single point, or in a single direction, we have kept the “connect”
and “trace” pdfs above to account for the potentially different strategies for choosing the light source
for next event estimation and light subpath tracing, respectively.

8.4.4 Specular materials

Similarly to point and directional lights, scattering at materials likemirror and glass is defined via delta
BSDFs that cannot be handled directly by Lebesgue integration and thus neither by general-purpose

1Recall that the eye subpath quantities were originally defined differently than the light subpath quantities in Section 8.3.1,
because we do not allow light subpaths to randomly hit the eye lens.
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numerical methods like Monte Carlo integration. ese distributions define a single direction with a
non-zero scattering contribution, which is deterministically followed in a randomwalk. erefore, the
forward and reverse scattering probabilities at a path vertex xi with a delta BSDF are simply one:

p(ωxixi+1 |xi,ωxi−1xi) = 1 p(ωxixi−1 |xi,ωxi+1xi) = 1. (8.47)

xi−1
xi

xi+1 xi−1
xi

xi+1

When the BSDF is a mixture of distributions, at least one of which is a delta distribution (e.g. specular
reflection or refraction), the above pdfs become equal to the probability of choosing the particular
delta component at xi. Note that when randomly hitting the eye lens with a light subpath is disallowed,
purely specular (LS+E) paths can only be sampled unidirectionally from the eye and thus have the
trivial MIS weight of one.

Vertices with delta BSDFs also cannot be connected to or merged with other vertices, in the sense that
the measurement contribution of the resulting full paths (Eq. 3.31) is always zero. As a result, certain
path sampling techniques become invalid and their zero probabilities need to be accounted in theMIS
weights. Specifically, a delta BSDF at vertex xi makes the following path sampling techniques invalid:

p,i,k−i+1 = 0 p,i+1,k−i = 0 p,i+1,k−i+1 = 0 (8.48)

xi−1
xi

xi+1 xi−1
xi

xi+1 xi−1
xi

xi+1

We can account for these zero-probability techniques in the MIS weight as we trace the subpaths. If
the scattering event at vertex i−1 is specular, then the weight quantities for vertex i simplify to

yi, zi : di = 0

di =
←−g i−1
−→pi

←−pω,i−2 di−1

di =
←−g i−1
−→pi

←−pω,i−2 di−1.

(8.49)

(8.50)

(8.51)

Note that with these modifications our scheme correctly handles the case where the BSDF at subpath
vertex i− 1 is a mixture of delta and non-delta components. e type of scattering event chosen at
that vertex only influences the quantities di for the next vertex, and not the quantities di−1. Vertex
i−1 is still stored and used for connection and merging to construct other paths whose measurement
contribution is evaluated with the non-delta BSDF components at that vertex. For those paths theMIS
weight formulas from Section 8.3.2 apply as usual.

8.4.5 Bidirectional path tracing

e path weight evaluation scheme from Section 8.3 can be easily applied to traditional bidirectional
path tracing by restricting the formulas to only account for vertex connection techniques. is is
achieved by setting η= 0 in Equation 8.31 and Equations 8.36–8.43 and also eliminating the vertex
quantity di . e resulting weight accumulation scheme then becomes nearly identical to the one
proposed by van Antwerpen [141].
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8.4.6 Bidirectional photon mapping

Bidirectional photon mapping [146] is another special case of VCM that only uses vertex merging
techniques. Analogously to the bidirectional path tracing case above, restricting the weighting to ver-
tex merging techniques is as simple as setting the terms involving η in Equations 8.29, 8.32, 8.34
and 8.35 to zero and also eliminating the vertex quantity di .

8.5 Extensions

We now present three useful extensions to the basic VCM algorithm we described in Section 7.3.2. We
first show how to accommodate the use of a different merging radius for each full path in our MIS
weight evaluation scheme. We then describe how to interleave the evaluation of the vertex connection
and vertex merging estimators to significantly reduce the memory footprint of the algorithm. Finally,
we discuss possible ways to incorporate motion blur and spectral rendering in VCM.

8.5.1 Per-path merging radii

emerging radius r is an importantVCMparameter that controls the performance of the vertexmerg-
ing techniques and also their relative weights in the combined MIS estimator (Eq. 7.14). e optimal
radius size generally varies across the scene, however our MIS weight accumulation scheme from Sec-
tion 8.3 implicitly assumes that all vertex merging estimators use the same global radius r. is is due
to the dependence of the cumulative subpath vertex quantities di and di on r via η (Eq. 8.18). If
we use different merging radii at different locations in the scene (e.g. derived from the pixel footprint)
and want to obtain meaningful MIS weights, we need to make these vertex quantities independent of r.
We achieve this by replacing the vertex quantities di and di by two new quantities ci and ci :

y1 : d1 =
pconnect0
ptrace0

1
−→p1

z1 : d1 =
pconnect0
ptrace0

nlight
−→p1

c1 =
←−g0

ptrace0
−→p1

c1 = 0

c1 = 0 c1 = 0

(8.52)

(8.53)

(8.54)

yi, zi : di =
1
−→pi

ci =
←−g i−1
−→pi

(
di−1 +←−pω,i−2 ci−1

)
ci =

←−g i−1
−→pi

(
1 +←−pω,i−2 ci−1

)

(8.55)

(8.56)

(8.57)
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Having ci and ci , the quantities di and di for subpath vertex i can be computed on-the-fly:

di = ci +η ci

di =
ci

η
+ ci

(8.58)

(8.59)

With this modification, the evaluation of η, and thus of di and di , can be postponed to the
point when a full path is constructed using a particular eye subpath vertex. is allows us to choose
a different radius r for each path. However, we still need to use the same r in the weight for every
possible technique that can sample a given full path, so that all weights for that path sum up to one.

In an actual implementation, the merging radius can be computed from the pixel footprint [53] at
the first eye subpath vertex with a non-delta BSDF and then reused for all subsequent vertices. When
connecting a light subpath vertex to an eye subpath vertex (where the latter can also be on the eye lens),
the radius is computed by propagating the pixel footprint from the eye along the resulting full path.

8.5.2 Memory-efficient implementation

eVCM algorithmwe presented in Section 7.3.2 is split into two stages, where the first stage traces all
light subpaths and stores their vertices, similarly to photonmapping. Since these vertices are also used
for connections in the second stage, we need to store their associated BSDF structures as well. However,
in production renderers the shading structure at a surface point can be as large as 1KB2, which results
in a gigabyte of storage per million vertices. is memory issue does not appear in bidirectional path
tracing, where every pixel is rendered independently and its corresponding light and eye subpath pair
is immediately discarded upon connecting their vertices. Photon mapping can also maintain a low
memory footprint, as it always evaluates BSDFs at the eye subpath vertices, thereby avoiding the need
for storing shading data at the light subpath vertices.

To reduce the memory footprint of the light subpath vertices, we can modify our progressive VCM
algorithm so that each rendering iteration operates in a single stage as follows. At every iteration,
for each pixel we first trace one light subpath. We then copy its vertices into a separate global list,
where for each vertex we only keep the position, incident direction, sampling throughput, and the
three cumulativeMIS weight quantities. ememory footprint of a vertex is then as large as in photon
mapping but with the addition of the three weight quantities. Aer that, we trace an eye subpath
through the pixel. Every eye vertex is connected to the light subpath and also merged with all nearby
light vertices that have been stored in the previous iteration. Finally, we discard both subpaths. Aer
rendering all pixels, we build a range search acceleration structure over the light vertices in the separate
global list, aer disposing the structure from the previous iteration. Rendering begins by tracing an
initial set of light subpaths that are only used for merging at the first iteration. Alternatively, we can
skip merging at the first iteration and scale the VM contributions at the second iteration by 2×.
e above modification makes VCM very similar to bidirectional path tracing, with the addition of
caching all light vertices at every iteration and reusing them for merging at the following iteration. In-
terleaving the connection andmerging estimator evaluations allows us to reduce thememory footprint
to the level of photon mapping, with only three additional floating-point numbers per light vertex.

2Shading structures oen store the results from multiple texture queries, local geometric and shading coordinate frames
and derivatives, as well as BSDF parameters.
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8.5.3 Motion blur and spectral rendering

Our discussion so far has assumed rendering a still image at a given time instant (i.e. infinitely small
time window). In reality, however, physical cameras take pictures by opening their shutter for a finite
period of time. As a result, any motion in the scene is integrated over this time interval. Simulating
this so-called temporal anti-aliasing, or motion blur, effect is crucial in animation rendering in order
to reproduce visually smooth motion with a finite sequence of images. We have also disregarded the
simulation of wavelength-dependent effects, such as chromatic dispersion, which are produced by ma-
terials whose scattering properties, e.g. index of refraction, vary with wavelength. ese effects cannot
be accurately captured with the commonly used red-green-blue spectral representation we described
in Section 3.3, which assumes that the directional component of BSDFs is wavelength-independent.

In order to render motion blur and dispersion, one needs to consider a more general form of the
path measurement contribution (Eq. 3.31) as a function of time and wavelength, respectively, and per-
form explicit integration over the shutter interval and the visible light spectrum in the light transport
equation (Eq. 3.27). In a Monte Carlo pixel estimator this translates to assigning random time t and
wavelength λ values to every sampled path x:

Î =
f (x, t,λ)
p(x, t,λ)

. (8.60)

Below we describe two possible approaches to rendering motion blur and dispersion with VCM.

Per-iteration time and wavelength sampling
A relatively straightforward approach, in terms of implementation effort, to extend our progressive
VCM is to draw one random time value and one random wavelength for each rendering iteration and
use them for all paths sampled in that iteration. is requires no other modifications to the rendering
code, as the Monte Carlo integration over shutter time and light spectrum is entirely delegated to the
higher-level secondary pixel estimator (Eq. 7.16). e disadvantage of this approach is that it cannot
be easily combined with the memory-efficient VCM implementation described above. is is because
the light subpaths sampled at one iteration and the eye subpaths sampled at the subsequent iteration
will have mismatching time values and wavelengths, which will prevent the merging of their vertices
into full paths.

Vertex merging in time and wavelength
An alternative approach is to sample a different random time value and wavelength for each sub-
path and explicitly consider “merging” in the time and spectral domains, in addition to the spatial
domain [6]. at is, for vertex merging (VM) we can consider all light vertices within a small neigh-
borhood around the eye query vertex not only in space but also in time and wavelength. e VM path
acceptance probability (Eq. 7.10) then needs to include the joint probability for sampling a ‘photon’
inside this higher-dimensional neighborhood:

Pacc(x) =
∫
Mr

p(xs−1→x)dx

︸ ︷︷ ︸
location probability

·
rt∫
−rt

p(teye+ t)dt

︸ ︷︷ ︸
time probability

·
rλ∫
−rλ

p(λeye+λ)dλ

︸ ︷︷ ︸
wavelength probability

≈ πr2 p(xs−1→x∗s ) · 2rt p(teye) · 2rλ p(λeye),

(8.61a)

(8.61b)
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which is the product of the acceptance probabilities respectively in space, time, and wavelength. Here,
r is the spatial merging radius, rt and rλ are the time and wavelength merging radii, p(t) and p(λ)
are the time and wavelength sampling pdfs, and teye and λeye are the sampled time and wavelength
values of the eye subpath. In Equation 8.61b we have assumed that the time and wavelength sampling
pdfs are locally constant around teye and λeye respectively, as we did in Equation 7.10b. However, this
approximation is rarely necessary as in practice these pdfs have simple forms and so the exact values
of the corresponding integrals in Equation 8.61a can be usually computed analytically. We can plug
Equation 8.61 into Equation 7.11 to obtain the VM path pdf that we can use to weight the technique
in the combined VCM estimator (Eq. 7.14).

Each of the three acceptance probabilities in Equation 8.61 is less than or equal to 1, and so is their
product. e final acceptance probability is also at most equal to the one in Equation 7.10. In fact, de-
pending on the values of rt and rλ, it can be one ormore orders ofmagnitude smaller, which reflects the
fact that narrowing the search range in time and wavelength reduces the efficiency of vertex merging.
Aside from the additional blurring bias introduced, this reduced efficiency is the major disadvantage
of this approach. Furthermore, as pointed out by Kaplanyan and Dachsbacher [70], increasing the
blur dimensionality reduces the error convergence rate of vertex merging. In progressive VCM, the
former issue can be ameliorated by keeping around and merging with the light vertices from the last
few rendering iterations. is reduces the variance by increasing the number of samples, albeit at the
cost of higher memory usage. It can also be shown that, thanks to the MIS combination with unbiased
vertex connection techniques, increasing the blur dimensionality of vertex merging does not alter the
error convergence rate of the progressive combined VCM estimator.

8.6 Discussion

emain focus of this chapter is the recursiveMIS path weight evaluation scheme which avoids redun-
dant computations and improves the MIS efficiency in BPT and VCM.We expect the benefit from this
scheme to be particularly noticeable on platforms where random memory access is costly, e.g. graph-
ics processing units (GPUs). Our scheme allows for evaluating the weight of a full path by only using
data stored at the two vertices that are connected or merged. Since no other path vertices need to be
accessed, we can avoid storing the eye subpath vertices altogether. is effectively makes the second
stage of the VCM algorithm an extension to traditional path tracing with next event estimation with
the addition of light subpath connection and merging at every eye subpath vertex. Below we discuss
other relevant details in the practical implementation of the algorithm.

Parameter choice
We concluded Chapter 7 with a high-level discussion on the parameter choice for the progressive VCM
algorithm. In this chapter we showed how to accommodate per-pathmerging radii in theMIS weights,
which allows us to give a more concrete suggestion for this choice. We recommend computing the
merging radius at iteration i as

ri =
√

s ·Apixel
√

iα−1, (8.62)

whereApixel is the area of the pixel footprint at the firstmerging vertex from the eye along the path. is
footprint is optionally scaled by the user parameter s > 0 whose default value is 1. Using this radius
formula and setting the number of VM light subpaths n to the number of pixels makes the variance
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of the resulting image independent of its resolution. And while the variance of progressive photon
mapping crucially depends on the size of the radius, in VCM we can typically afford using a small,
pixel-wide merging radius, thanks to the MIS combination with vertex connection techniques. As in
Section 7.6, we recommend setting the radius reduction parameter to α = 0.75; however, it is oen
safe to disable the reduction altogether (by setting α = 1) when the size of the merging disk becomes
sufficiently smaller than the pixel footprint. Doing this makes the variance converge slightly faster at
the cost of a small amount of bias.

Note that Equation 8.62 effectively turns themerging radius ri into a random variable that is a function
of (part of) the path. As a result, it is not anymore guaranteed that the radius for every pixel will
decrease strictly monotonically over time. However, the progressive reduction by the factor

√
iα−1

ensures that the asymptotic error behavior of the progressive VCM remains unchanged.

Limitations
One constraint that our recursive path weight evaluation scheme poses is that no terms in the weight
can depend on (sub)path lengths. For example, we cannot make the Russian roulette path termination
probability or the number of vertex connections at an eye vertex dependent on the eye subpath length.
e reason is that these quantities need to be evaluated when accumulating the partial MIS weights
during light subpath tracing, without any knowledge of the full path length. is limitation has been
also pointed out by van Antwerpen [141]. One way to circumvent it is to consider such terms inde-
pendent of the path lengths when evaluating the MIS weights or to completely exclude them from the
weights. Alternatively, the per-vertex storage can be augmented with additional partial weights that
are specialized for connections to eye subpaths of different lengths.

Reference implementation
We provide an open-source implementation of the VCM algorithm that uses our efficient path weight
evaluation scheme in the SmallVCM renderer [21]. At the time of this writing, the implementation
covers all special cases discussed in Section 8.4, but not the extensions from Section 8.5. SmallVCM
also implements traditional path tracing, light tracing, bidirectional path tracing, progressive photon
mapping, as well as progressive bidirectional photon mapping, which are all special cases of the com-
bined VCM algorithm.
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Joint Path Sampling
in Participating Media 9
In the previous four chapters we focused on surface light transport and mostly disregarded the poten-
tial presence of scattering participating media in the scenes we were interested in rendering. However,
media such as clouds, smoke, skin, fog, and liquids are ubiquitous in the world and are responsible for
many important visual phenomena. Faithfully simulating light transport in such media is a challeng-
ing problem whose applications span many diverse fields beyond realistic image synthesis, including
medical imaging and nuclear physics.

Over the last three decades, the computer graphics community has adapted and developed a sizable
and diverse arsenal of methods for rendering participating media [7]. Although no single method
outperforms all others in every situation, we now have efficient approximations for rendering specific
scattering scenarios: (semi-)analytic techniques exist for simulating single scattering [133, 104, 101,
105, 106, 152]; methods based on the diffusion approximation [130] oen work well for high-albedo
homogeneous media [65, 25, 23, 37] (albeit with strict constraints on the media properties); and, the
Feynman path integral approximation [138, 111, 112] holds for highly forward-scattering media with
high albedo. ough thesemethods are eachwell-suited for specific cases, a common limitation of all is
their inefficiency or inaccuracy in handling surface occlusion, heterogeneous media, as well as media
with highly anisotropic scattering and moderate albedo. In such cases, one has to resort to general-
purpose Monte Carlo integration techniques like the ones we described in Chapter 4. Unfortunately,
these techniques can suffer from high variance, especially with anisotropic scattering and even for
media with low albedo where it is oen not necessary to simulate high-order scattering. In this chapter,
we address the efficiency of Monte Carlo techniques for path sampling in such media.

e task of every Monte Carlo rendering method is to construct light transport paths that connect the
light sources to the eye. As we discussed in Section 4.2, path vertices should ideally be sampled with a
joint pdf proportional to the path’s measurement contribution. Unfortunately, the complex shape and
high dimensionality of the contribution function makes such joint sampling generally infeasible. Ex-
isting surface rendering methods sample paths incrementally via random walks, only locally account-
ing for certain contribution terms at each vertex. ese methods have traditionally been extended to
participating media by simply incorporating the propagation distance as an additional independent
sampling decision in the random walk. e resulting path probability density is thus a product of the
conditional densities of each local sampling step, constructed without explicit control over the form
of the final joint vertex distribution of the complete path, which can lead to significant variance in the
final estimator. In fact, though not widely known in computer graphics, it has long been acknowledged
in related fields that vertex connection basedmethods like path tracing with next event estimation and
many-light rendering can suffer from infinite variance in the presence of scattering media [68].

In this chapter, we analyze why current volumetric path construction schemes oen lead to high vari-
ance and reveal that such approaches are an unnecessary legacy inherited from traditional surface-
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based rendering algorithms. We then propose joint importance sampling of path vertices in participat-
ing media to account for the product of phase functions and geometry terms along entire sequences of
vertices instead of just locally at a single vertex. Although importance sampling the BSDF, the lighting,
or their product has been investigated for direct surface illumination (see Section 4.7.1), generaliza-
tions to multiple bounces (a sequence of vertices) are challenging due to the curse of dimensionality.
We exploit the extra dimension in participating media as a degree of freedom, along with symme-
tries uniquely present in medium light transport, to make sampling from joint importance distribu-
tions practical. For the case of isotropic scattering, we derive analytic formulas for exact importance
sampling of the product of geometry terms for a sequence of vertices (three path edges) joining two
given subpaths. For anisotropic scattering, we build compact tabulations for importance sampling
the product of the geometry and phase function terms. We demonstrate the benefit of the resulting
path sampling techniques by integrating them into several rendering algorithms: path tracing, bidi-
rectional path tracing, and many-light methods. We use these techniques to generalize deterministic
vertex connections to connection subpaths, involving of two or three random sampling decisions, to
efficiently simulate higher-order multiple scattering. Our algorithms significantly reduce noise and
increase performance in renderings with both isotropic and highly anisotropic, low-order scattering.

e remainder of this chapter is organized as follows. In the next section, we review existing techniques
for path sampling in participating media and interpret them as constructing connections between sub-
path vertices and segments involving 0, 1, and 2 random decisions. We then consider the problem of
connecting a given vertex and a given semi-infinite segment via a length-3 connection subpath involv-
ing 3 random decisions in Section 9.2. In Section 9.3, we derive analytic formulas for exact importance
sampling of the product of geometry terms along such connection subpaths. In Section 9.4 we build
compact tabulations of these pdfs to extend them to importance sample the product of geometry and
anisotropic phase function terms. We showcase the resulting sampling routines in Section 9.5, describ-
ing their integration into several path-based rendering algorithms. Section 9.6 concludes the chapter
with a discussion on the limitations and possible extensions of our method.

9.1 Path sampling in media

Central to every Monte Carlo-based rendering algorithm is the task of sampling paths and evaluat-
ing estimators for the light transport integral (Eq. 3.27). e integrand, i.e. the path measurement
contribution function (Eq. 3.31) can be factorized into the product of four terms:

f (x) = ρ(x)Tr(x)V (x)G(x), (9.1)

each being the product of all the scattering (BSDFs or phase functions), transmittance, visibility or ge-
ometry terms along the path, respectively (see Section 3.5.4). e variance of a path integral estimator
depends on the path’s sampling probability density p(x) = p(x0, . . . ,xk), which is given by the joint
density of the vertices and is fully determined by the sampling technique used to generate the path.

Ideally, the path sampling technique should be chosen such that its corresponding joint pdf is exactly
proportional to the measurement contribution function. Since this is generally not feasible in practice,
(sub)paths are typically constructed incrementally via random walks, vertex by vertex, importance
sampling only certain terms of f (x), optionally followed by a connection (Sec. 4.2). e resulting joint
path pdf is the product of the conditional pdfs p(xi|vertices sampled before xi) for every path vertex xi.
e variance of the resulting estimator crucially depends on the variability of those path contribution
terms that are not importance sampled.
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9.1.1 Existing techniques

We now analyze the different joint path pdfs induced by existing unbiased participating media render-
ingmethods. We introduce the notion of connection subpath and show that equi-angular sampling and
virtual ray lights (Sec. 4.5) can be interpreted as general path sampling techniques and employed for
connection subpath construction in bidirectional algorithms using both segments (lines) and vertices.
We will motivate our new sampling techniques by identifying the path contribution terms that are not
importance sampled by each existing technique.

Since we focus on media, and in the interest of keeping the exposition simple, hereinaer we assume
that all path vertices correspond to volume scattering events, i.e. that G(x,y) = 1/∥x−y∥2. We express
directional pdfs p(ω) w.r.t. the solid angle measure, distance pdfs p(t) w.r.t. the Euclidean length on
R, and medium vertex pdfs p(x)w.r.t. the Euclidean volume onR3. Converting from the solid angle×
length product measure to the volume measure requires multiplication by a corresponding geometry
term G. We use an example length-3 path abcd depicted in Figure 9.1 throughout our discussion.

Unidirectional sampling
e traditional randomwalk path sampling approach is to first sample a vertexd on the eye sensor from
a pdf p(d) proportional to the emitted importance and then to incrementally extend the path with new
vertices until a light source is hit (Fig. 9.1a). Given vertex c in the mediumwith incident direction ωdc,
the next path vertex b is sampled as follows: First, a direction ωcb is sampled proportionally to the
phase function at c, i.e. p(ωcb |ωdc, c)∝ ρ(c). e propagation distance tcb along ωcb is then sampled
proportionally to transmittance1 with pdf p(tcb |c,ωcb)∝ Tr(b,c). e direction ωcb and distance tcb
determine the next vertex b, with conditional pdf:

p(b |ωdc,c) = p(ωcb |ωdc,c) p(tcb |c,ωcb)G(b,c), (9.2)

where G(b,c) is needed to convert the pdf of b to the volume measure.

e path pdf of this unidirectional sampling technique is the product of p(d) and the pdf in Equa-
tion 9.2 for every other vertex. is joint pdf is proportional to the product of all terms in the path
contribution (Eq. 9.1) except the emitted radiance ρ(a) = Le(a→ωab). Unfortunately, in practice this
approach oen yields estimators with very high variance due to the negligible probability of hitting
small light sources. Alternatively, paths can be constructed unidirectionally starting from light sources,
but the resulting light tracing algorithmusually has even higher variance because of the small size of the
eye sensor. In practice, both path and light tracing use next event estimation with explicit connections
to lights or sensors. ese are special cases of the bidirectional path sampling discussed next.

Vertex-vertex connection
To address the high variance of unidirectional sampling, both emitted light source radiance and sensor
importance must be included in the path pdf. is can be achieved with bidirectional sampling, illus-
trated in Figure 9.1b. First, one subpath with s vertices is sampled with a random walk from a light
source and another one with t vertices from the eye. e endpoints of these independent subpaths

1Surface scattering occurs if tcb is beyond the nearest surface intersection along the ray (c,ωcb). We disregard this tech-
nicality here for the sake of simplicity.
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Figure 9.1: A comparison of various existing techniques for sampling light transport paths in a medium.
e pink connection vertices are sampled from line distributions that are conditioned on the endpoints
and/or end-lines of the light and eye subpaths.

are then deterministically connected with an edge, completing a full path. We already described this
vertex-vertex connection technique in detail in Section 4.2.3. Next event estimation for path and light
tracing corresponds to s = 1 and t = 1, respectively.

Vertex-vertex connection can also lead to high variance, as it does not importance sample any of the
contribution terms that depend on the connection edge. is deterministically constructed path edge
can be viewed as a 0-random-decision subpath connecting the light and eye subpaths (see Figure 9.1b).
In fact, the variance is infinite due to the geometry term G(b,c) diverging as b and c approach each
other [68]. To resolve this, bidirectional path tracing exploits the fact that any full path can be generated
using a number of techniques, each corresponding a unique combination of different lengths for the
light and eye subpaths. e multiple importance sampling (MIS) combination of the corresponding
estimators yields finite and oen relatively low variance, however the resulting combined joint path
pdf remains a simple linear combination of the pdfs of the individual techniques, as opposed to the
product of all path integrand terms.

Vertex-segment connection

e equi-angular sampling technique, which we introduced in Section 4.5.1, importance samples the
geometry term of the connection edge between two subpaths. Kulla and Fajardo [80] used this tech-
nique for rendering single scattering, but it can be generalized to a vertex-segment connection strategy
in bidirectional sampling with a pdf conditioned on both the light and eye subpaths (Fig. 9.1c).

Given the end verticesb andd on the light and eye subpaths, alongwith a directionωdc fromd, the equi-
angular technique constructs a 1-random-decision connection subpath by sampling the propagation
distance tdc along ωdc to create vertex c with a pdf proportional to the inverse squared length of the
connection edge bc: p(tdc |b,d,ωdc) ∝ G(b,c). is technique oen results in lower variance than
transmittance sampling. However, it does not importance sample any other terms in the connection,
namely: Tr(b,c),V (b,c), Tr(d,c),V (d,c), ρ(b), and ρ(c).

Kulla and Fajardo [80] originally proposed equi-angular sampling to “cancel out” the weak singularity
inG(b,c). However, aswewill show in Section 9.3.2 below, the true singularity in fact remains “hidden”
in the orientation of the ray (d,ωdc)w.r.t. the vertex b. Wewill eliminate this singularity by importance
sampling the ray direction ωdc.
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Segment-segment connection
Recent extensions to photon density estimation have achieved significant improvements by using lines,
instead of vertices, as the eye [58] and light [134, 59] path building blocks. Inspired by this work, Novák
et al. [96] analyzed many-light rendering in anisotropically scattering media and showed that such
line-based path construction can provably reduce estimator singularities. eir virtual ray light (VRL)
method, which we summarized in Section 4.5.2, uses a one-sample Monte Carlo estimator to calcu-
late the total energy transfer between a “virtual ray light” and an eye ray. We reinterpret this method
as a general bidirectional segment-segment connection technique, which we illustrate in Figure 9.1d.
Given the end vertex a of a light subpath, along with direction ωab (i.e. the virtual ray light), and an
end vertex d on an eye subpath, along with direction ωdc, this 2-random-decision technique samples
the propagation distances tab and tdc from a joint conditional distribution p(tab, tdc |a,ωab,d,ωdc) ∝∼
G(b,c)ρ(b)ρ(c). e approximate proportionality stems from various simplifications in the VRL ap-
proach, which we will improve upon in Section 9.4.3.

In Figure 9.1 we observe that the only difference between vertex-vertex connection, equi-angular sam-
pling, and VRLs is the pdf for sampling the distances tab and tdc. is pdf is either proportional to
transmittance or to the scattering and/or geometry term(s) involved in the connection. Each of these
techniques can be viewed as creating connections between light and eye subpaths with a varying num-
ber of random decisions (0, 1, or 2). In the following sections we go a step further and develop a
practical method for creating connection subpaths involving 3 random decisions, where the extra deci-
sion is direction sampling. We then show how to extend unidirectional and bidirectional path tracing
with such connections, which will lead to significant variance reduction.

9.1.2 Relationship to neutron transport

Many of the sophisticated participating media rendering techniques used in computer graphics have
been adapted (and sometimes unknowingly reinvented) from the neutron transport and radiative
transfer literatures, which have a much longer history of investigating these problems [8, 129]. ose
fields are oen concerned with using Monte Carlo simulations to estimate flux, or dose, at a point
or some volume of interest. Density estimation in volumetric photon mapping uses a so-called colli-
sion estimator, and the path segment improvements [59, 96] share similarity with, and extend upon,
track length estimators [128]. Volumetric path tracing with next event estimation corresponds to the
uncollided flux (UCF) estimator used in neutron transport simulations since the early 1960s.

Kalos [68] proved that theUCF estimator has infinite variance due to the 1/d2 singularity in the geome-
try term, and even worse, its use leads to an abysmal 1/ 3

√
N error convergence rate [68, 27]. To remedy

this problem, Kalos proposed the once collided flux (OCF) estimator, which samples an extra path ver-
tex when forming the connection, and proved that this technique reduces the order of the singularity
to 1/d and recovers the more favorable 1/

√
N error convergence rate. Since this seminal work, many

researchers have suggested improvements or simplifications to the OCF estimator. Some methods fo-
cused on further reducing the singularities and bounding the variance [131, 113]. Others simplified
the sampling procedure while still retaining a square root convergence rate, making use of the equi-
angular approach to sample the extra vertex [67, 115], similarly to Kulla and Fajardo [80]. Much like
Kalos’ OCF estimator and its extensions, we sample additional path vertices to reduce singularities;
however, we go a step further by considering not just one but two vertices, while also accounting for
all geometry and anisotropic scattering terms along the connection subpath.
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9.2 Joint path vertex sampling

Wenowdescribe our problem setting. We consider a configurationwhere a light subpath xla and an eye
subpath dxe are given. Our aim is to construct a full path xlabcdxe by connecting the endpoints a and
d with two new vertices b and c via a 3-random-decision connection subpath, as shown in Figure 9.2a.
e subpaths xl and xe can have arbitrary lengths; zero lengths correspond to the double-scattering
case where a is on a light source and d is on the eye lens. We also assume that a direction ωdc at vertex
d is given, which is sampled as part of the eye subpath. e input to our sampling techniques is thus a
vertex a with incident direction ωla and a vertex d with outgoing direction ωdc.

Since the new vertex c must reside on the ray (d,ωdc), our task reduces to sampling a distance tdc from
d along the ray (d,ωdc) and another vertex b in 3D space. e pdf of the resulting full path is then

p(x) = p(xl,a,ωdc,d,xe)p(b, tdc |ωla,a,ωdc,d)G(c,d), (9.3)

where the term G(c,d) again arises due to measure conversion. Note that the pdf p(xl,a,ωdc,d,xe) is
given by the chosen rendering algorithm, not by our sampling techniques. For example, when using
bidirectional path tracing, the light and eye subpaths are sampled independently, in which case this
pdf is given by the product of the two subpath pdfs: p(xl,a,ωdc,d,xe) = p(xl,a)p(ωdc,d,xe). How
the light and eye subpaths are created is however orthogonal to our problem; our sampling techniques
only require that the input configuration (ωla,a,ωdc,d) be provided. Since all our pdfs are conditioned
on this input configuration, we will use the following shorthand notation for it:

Ξ ≡ ωla,a,ωdc,d. (9.4)

Ideally, we would like to define the three-dimensional joint pdf p(b, tdc |Ξ)G(c,d) (i.e., the pdf of the
terms that our techniques introduce) to be proportional to the path throughput f (abcd). Unfortu-
nately, deriving such a pdf is not feasible since its normalization constant is the solution of the path
integral. Inspired by prior work [80, 96], we propose to importance sample only the product of the
geometry and scattering terms, such that

p(b, tdc |Ξ)G(c,d) =CΞ G(abcd)ρ(abc), (9.5)

where the normalization factorCΞ (derived in Section 9.3 below) depends on the input configuration
Ξ, and where G(abcd) = G(a,b)G(b,c)G(c,d) and ρ(abc) = ρ(a)ρ(b)ρ(c). Our contribution is the
definition of the joint pdf p(b, tdc |Ξ) along with its corresponding sampling techniques. Note that
ρ(d) does not appear in the above equation, since we assume that both the outgoing direction, ωdc,
and the incident direction at d are given.

9.2.1 Factorizations of the joint pdf

Given the input configuration Ξ, there are a number of possible ways to obtain the connection sub-
path vertices. Each approach corresponds to factorizing the joint pdf in Equation 9.5 in a different
way, which influences the definition of the conditional pdfs for the individual vertices and their corre-
sponding sampling routines. We consider two such possible factorizations, depicted in Figure 9.2. In
this section we only on the factorization of this joint pdf, and we will later explain how to obtain and
sample from each factor.
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Figure 9.2: Given the vertices a and d, with an incident and an outgoing direction, respectively, we
aim to sample vertices b and c from a joint distribution with density proportional to the product of the
geometry and scattering terms of the resulting connection subpath. We derive the sampling techniques
corresponding to two possible factorizations of this joint pdf.

Unidirectional factorization
One way to sample b and c is to first sample a distance tdc, which effectively samples c in combination
with the given ωdc, then sample a direction ωcb, and finally sample a distance tcb to obtain b. is
process is illustrated in Figure 9.2b. We call this unidirectional factorization since c and b are sampled
from the same direction along the path starting from d.

Since we sample b as a distance and direction from c, we need to change the measure of the joint pdf
in Equation 9.5 to

p(b, tdc |Ξ) = p(tcb,ωcb, tdc |Ξ)G(b,c). (9.6)

In order to sample the connection subpath, we factorize the joint pdf on the right-hand side above into
the product of three conditional pdfs, corresponding to first sampling tdc, then ωcb, and finally tcb:

p(tdc,ωcb, tcb |Ξ) = p(tdc |Ξ) (U3)

p(ωcb | tdc,Ξ) (U2)

p(tcb |ωcb, tdc,Ξ). (U1)

(9.7a)
(9.7b)
(9.7c)

We introduce a shorthand notation U above, where the subscripts denote the order in which we will
derive the conditional pdfs.

Bidirectional factorization
Another way to sample b and c is to first sample a direction ωab from a, then a distance tab, which
yields b, and finally a distance tdc to obtain c. We call this bidirectional factorization since b and c are
sampled from opposite directions.

In this process, illustrated in Figure 9.2c, b is sampled as a direction and distance from a, and the
change of measure of the target pdf is

p(b, tdc |Ξ) = p(tab,ωab, tdc |Ξ)G(a,b). (9.8)
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ebidirectional factorization samples the connection subpath by factorizing this pdf into the product
of three conditional pdfs, corresponding to first sampling ωab, then tab and tdc:

p(ωab, tab, tdc |Ξ) = p(ωab |Ξ) (B3)

p(tab |ωab,Ξ) (B2)

p(tdc |ωab, tab,Ξ). (B1)

(9.9a)
(9.9b)
(9.9c)

As in the unidirectional factorization above, we use a shorthand notation B for these conditional pdfs.

9.2.2 Sampling from the joint distributions

Given the factorizations defined in Equations 9.7a–9.7c and 9.9a–9.9c, we now need to derive the in-
dividual conditional pdfs. We do this via successive marginalization – a process we described in Sec-
tion 2.4.3. In rendering, marginalization is commonly used for isolated low-dimensional sampling
problems, such as drawing a direction proportional to the luminance of an environment map given
by a 2D texture [109]. However, marginalization is not typically used for constructing random walk
paths.

In the following two sections, we derive the conditional pdfs for both factorizations above using the
marginalization relations in Equation 2.38. In Section 9.3, we derive analytic formulas for the pdfs
and the sampling routines for the unidirectional factorization for the case of isotropic scattering. In
Section 9.4, we will show how to take advantage of the symmetries in the geometry of the sampling
problem to construct low-dimensional pdf tabulations for both the unidirectional and bidirectional
factorizations for the general case of anisotropic scattering.

9.3 Analytic sampling

We first derive analytic expressions for the conditional pdfs in Equations 9.7a–9.7c for the case of
isotropic scattering. Since the phase function is constant, Equation 9.5 simplifies to2

p(b, tdc |Ξ)G(c,d) =CΞ G(a,b)G(b,c)G(c,d). (9.10)

Using Equation 9.6 and canceling out geometry terms, the above further simplifies to

p(tcb,ωcb, tdc |Ξ) =CΞ G(a,b). (9.11)

Figure 9.3 illustrates the sampling process. Below we derive U1, U2, and U3 in this order via repeated
marginalization.

2Note that the constantCΞ now also incorporates the product of the three isotropic phase functions (4π)−3.
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9.3.1 Derivation of U1

Following the standard definition of conditional pdfs in Equation 2.38, we have

p(tcb |ωcb, tdc,Ξ) =
p(tcb,ωcb, tdc |Ξ)

p(ωcb, tdc |Ξ)
. (9.12)

From Equations 2.36 and 9.11 it follows that the denominator above is obtained by integrating out tcb:

p(ωcb, tdc |Ξ) =
∞∫

0

p(tcb,ωcb, tdc |Ξ)dtcb

=

∞∫
0

CΞ G(a,c+ tcbωcb)dtcb =CΞ

∞∫
0

1
t2
ba

dtcb

=CΞ

∞∫
0

1
h2

ca⊥ +(tca⊥− tcb)2 dtcb =CΞ
π−θcb

tca sinθcb
,

(9.13a)

(9.13b)

(9.13c)

where hca⊥ is the distance between a and the ray (c,ωcb), tca⊥ is the distance between c and this pro-
jection, and θcb is the angle between ωcb and the line between c and a of length tca (Fig. 9.3c). By
inserting Equations 9.11 and 9.13 into Equation 9.12, we obtain a simple expression for the pdf of tcb:

p(tcb |ωcb, tdc,Ξ) =
tca sinθcb

π−θcb

1
h2

ca⊥+(tca⊥− tcb)2 . (9.14)

e denominator of the second term on the right-hand size is simply the squared distance t2
ba. is pdf

is exactly equal to that of equi-angular sampling [67, 115, 80] provided that a, ωcb, and c are given.
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9.3.2 Derivation of U2

e geometric configuration for sampling the direction ωcb is illustrated in Figure 9.3b. Again, follow-
ing the definition of conditional pdfs (Eq. 2.38), we have

p(ωcb | tdc,Ξ) =
p(ωcb, tdc |Ξ)

p(tdc |Ξ)
. (9.15)

Following the marginalization chain, from Equation 9.13 we get

p(tdc |Ξ) =
∫
S

p(ωcb, tdc |Ξ)dωcb

=

2π∫
0

π∫
0

CΞ
π−θcb

tca sinθcb
sinθcb dθdϕ =

CΞπ3

tca
.

(9.16a)

(9.16b)

e resulting conditional pdf for samplingωcb, obtained by dividing Equation 9.13c by Equation 9.16b,
thus depends only on a and c since the normalization factors again cancel out:

p(ωcb | tdc,Ξ) =
π−θcb

π3 sinθcb
. (9.17)

Note that the above pdf diverges when θcb approaches zero. is same singularity also appears in the
path contribution function f (when f is expressed as a function of the angle θcb) [115]. By sampling
ωcb from this pdf, in Section 9.3.5 we will effectively cancel out this singularity, reducing variance.
Note also that the equi-angular pdf (Eq. 9.14) has no singularity since ωcb is fixed.

9.3.3 Derivation of U3

e final marginalization step gives us the pdf for sampling the distance tdc along the ray (d,ωdc). To
complete the definition for this pdf, which is already given by Equation 9.16, we only need to derive
the normalization factorCΞ, which we do by enforcing the pdf (Eq. 9.16b) to integrate to 1:

∞∫
0

p(tdc |Ξ)dtdc =

∞∫
0

CΞπ3√
h2

da⊥+(tda⊥− tdc)2
dtdc =

∞∫
0

1
tca

dtdc = 1, (9.18)

where hda⊥ is the distance between a and its projection onto the ray (d,ωdc), and tda⊥ is the distance be-
tween d and this projection (Fig. 9.3a). Unfortunately, the above integral diverges at infinity; however,
by setting a maximum sampling distance tmax

dc along (d,ωdc), we can obtain an analytical expression
for it:

CΞ π3 =
1

Ctmax
dc

=
1

asinh
(

tmax
dc −tda⊥

hda⊥

)
− asinh

(
−tda⊥
hda⊥

) . (9.19)

Substituting Equation 9.19 into Equation 9.16b yields the pdf for tdc as simply

p(tdc |Ξ) =
1

Ctmax
dc

1√
h2

da⊥ +(tda⊥− tdc)2
=

1
Ctmax

dc
tca

, (9.20)

whereCtmax
dc

was defined in Equation 9.19 above. Interestingly, this means that for double-scattering the
propagation distance should be chosen proportionally to the inverse distance to a, whereas for single-
scattering the equi-angular technique samples proportionally to the inverse squared distance to a.
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9.3.4 Joint unidirectional pdf

Now that we have completed the marginalization process, we can obtain a closed-form expression for
the joint pdf in Equation 9.6 by multiplying the conditional pdfs U1, U2 and U3 from Equations 9.14,
9.17 and 9.20 respectively:

p(b, tdc |Ξ) = p(tcb,ωcb, tdc |Ξ)G(b,c)

=
G(a,b)G(b,c)

π3Ctmax
dc

.

(9.21a)

(9.21b)

Substituting back into Equation 9.3, we can confirm that the final path pdf indeed includes the geom-
etry term G(abcd).

Note that we subsume Kalos’ [68] once collided flux (OCF) approach by sampling two distances and
a direction to construct two intermediate vertices between a and d. Kalos’ OCF corresponds to sam-
pling the vertex b proportionally to the product of geometry terms to a and a fixed c. is has a pdf
p(b | tdc,Ξ) = p(b, tdc |Ξ)/p(tdc |Ξ), which arises by dividing Equation 9.21 by Equation 9.20.

9.3.5 Unidirectional sampling techniques

In order to use our importance sampling techniques, we not only need the above pdfs, but also the
corresponding sampling routines derived from their inverse cumulative distribution functions (CDFs).

Sampling from U3

A random distance tdc along the ray (d,ωdc) can be sampled using the inverse CDF of Equation 9.20,
derived by integrating the pdf over the ray and solving for tdc:

tdc = tda sinh(ξCtmax
dc

) − tda⊥(1+ cosh(ξCtmax
dc

)), (9.22)

where tda =
√

h2
da⊥ + t2

da⊥ is the distance between d and a (Fig. 9.3a), and ξ ∈ [0,1) is a uniform
random number.

Sampling from U2

edirection pdf in Equation 9.17 is circularly symmetric, i.e. it depends only onθcb. Its corresponding
CDF is:

P(ωcb) =

2π∫
0

θcb∫
0

π−θ
π3 sinθ

sinθdθdϕ =
(2π−θcb)θcb

π2 . (9.23)

We invert it to solve for θcb, yielding the simple transformation

θcb = π(1−
√

ξ1), and ϕcb = 2πξ2, (9.24)

where ξ1 and ξ2 are uniform random numbers, and θcb and ϕcb represent standard spherical coordi-
nates with respect to a local frame where the direction from c to a is the z-axis (Fig. 9.3b).
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Sampling from U1

Given a uniform random number ξ, a distance tcb along ωcb is sampled using the inverse CDF of the
equi-angular pdf (Eq. 9.14), yielding vertex b:

tcb = tca⊥ +hca⊥ tan
(

ξ(π−θcb)+θcb−
π
2

)
. (9.25)

9.3.6 Discussion

e end result from the three steps above is a fully analytic method to importance sample the prod-
uct of the geometry terms along 3-segment paths (double-scattering) in isotropic participating me-
dia which generalizes and complements the equi-angular sampling method [80] for 2-segment paths
(single-scattering) as well as Kalos’ [68] OCF estimator.

Similarly to the unidirectional case, the three conditional pdfs of the bidirectional factorization in
Equation 9.9 are defined by the chain of marginalization of the joint pdf in Equation 9.8. e deriva-
tion of the first conditional pdf, B1, is the same as for U1. e resulting pdf is again equal to that of
equi-angular sampling given b, ωdc, and d. However, in contrast to the unidirectional case, we were
unable to obtain analytic expressions for the remaining two conditional pdfs, B2 and B3. In the fol-
lowing section, we present a tabulation method that can handle both factorizations, while additionally
supporting anisotropic phase functions, without requiring analytic formulations.

9.4 Tabulated sampling

To handle anisotropic scattering, we introduce a method to efficiently tabulate our target pdf in Equa-
tion 9.5 using both the unidirectional and the bidirectional factorizations. In constructing our tables,
we assume a circularly-symmetric 1D phase function (i.e. depending only on the deflection angle be-
tween the incident and outgoing directions). Isotropic scattering is a special case where the phase
function is simply ρ = 1/4π. As we will demonstrate in our results, our tabulations achieve nearly ideal
importance sampling of the product of the geometry and scattering terms.

e rest of this section follows the general structure of Section 9.3. We first describe the tabulations
for the conditional pdfs in the unidirectional factorization (Sec. 9.4.2) and then follow up with the
bidirectional factorization pdfs (Sec. 9.4.3).

9.4.1 General approach

As illustrated in Figure 9.2, both factorizations of our target pdf (Eq. 9.5) consider two types of sampling
events: (1) a distance along a given ray and (2) a direction from a given vertex. For a medium with a
given phase function, an entire family of pdfs exists for the geometric configuration of each sampling
event. For instance, given a ray (c,ωcb), there is in general a different 1D pdf along that line for every
possible relative location of vertex a and its incident direction ωla. Our task is then to construct a table
that holds tabulated line pdfs for a discrete set of positions a and directions ωla.
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Table parameterization

Even though each conditional pdf is one- or two-dimensional (corresponding to distance or direction
sampling), the additional dimensionality of conditional variables makes naïve tabulation intractable.
Our key idea to address this problem is to exploit the various symmetries in each geometric configu-
ration of conditional variables by designing a suitable canonical coordinate system. is coordinate
system allows us to dramatically reduce the dimensionality of our tables and their construction time.

Pdf parameterization

Depending on the geometric configuration, the pdfs we tabulate may have large variations. is is
because we consider the product of the geometry and scattering terms, both of which can have sharp
peaks. Such peaks can significantly reduce the accuracy of the tabulation; more importantly, when
the geometry term has a singularity, accurate tabulation is not even possible. We address this prob-
lem by warping the pdf domains via suitable reparameterizations that analytically eliminate geometric
variations.

9.4.2 Unidirectional factorization

For this factorization, illustrated in Figure 9.3, we seek to tabulate the factors given in Equation 9.7 for
the joint pdf:

p(tcb,ωcb, tdc |Ξ) =CΞ G(a,b)ρ(a)ρ(b)ρ(c). (9.26)

e difference from Equation 9.11 is that now we also take the phase functions into account. For
notation simplicity, in this section we will denote the pdfs and the normalization constantCΞ with the
same symbols as in Section 9.3, in spite of them being different.

Tabulation for U1

is pdf is the anisotropic generalization of the one defined in Equation 9.12 and illustrated in Fig-
ure 9.3c. For the tabulation we can safely ignore the denominator, since – as a function of tcb – it
is merely a normalization constant and we have to normalize our pdfs numerically anyway. We also
ignore the termsCΞ and ρ(c) in the numerator (Eq. 9.26), as both are constant w.r.t. tcb. We seek a pdf

p(tcb |ωcb, tdc,Ξ)∝ G(a,b)ρ(a)ρ(b). (9.27)

Novák et al. [96] proposed an on-the-fly tabulation of this pdf. However, their approach suffers from
limited accuracy and overhead from the on-the-fly construction. We avoid these issues by precom-
puting accurate approximations of a number of such pdfs once and storing them in a compact table,
which we can then use to sample a distance along any given ray. Our key observation is that this con-
figuration, in general parameterized by (a,c,ωla,ωcb), can in fact be expressed using just two angles
representing ωla in a suitable canonical coordinate system. is allows us to precompute the entire
family of pdfs into a compact 2D table of 1D pdfs.
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Figure 9.4: Canonical coordinate systems for tabulating the conditional pdfs in the unidirectional factor-
ization (Eq. 9.7) of the joint pdf in Equation 9.5, for the case of anisotropic scattering. For each configura-
tion we construct a table indexed by the entities colored in blue. e table entries are tabulated pdfs that
are used for making the corresponding sampling decisions illustrated in Figure 9.3.

Table construction. Figure 9.4c shows the canonical coordinate system used for the tabulation.
Given a ray (c,ωcb) and a vertex a, we first rescale the problem such that the distance between the
line and the vertex is one. We place the origin at a, the z-axis is aligned with the ray, and the x-axis
lies in the same plane. e table is indexed by the direction vector ωla. Each entry in the table is a pdf
p(u) over the (signed) distance u along the line, measured from the projection a⊥ of a onto the line.
Similarly to Novák et al. [96], we map the infinite line to a finite angular domain from the x-axis with
θ = arccotu. Each entry in our 2D table is a piecewise-linear approximation of the following pdf:

p(θ(u)) = p(u)
∣∣∣∣du
dθ

∣∣∣∣= p(u)
1

G(a,b(u))
∝ ρ(a)ρ(b(u)). (9.28)

We tabulate the entire domain of θ ∈ [0;π], employing adaptive refinement to improve accuracy. Note
that with the above change of variable, our tabulation is constant if the scattering is isotropic. In the
special case where scattering is isotropic only at a (e.g. a is a point light source), all tabulated pdfs in
the 2D table are identical, i.e. the table only has a single entry.

Sampling. For any given ray (c,ωcb), vertex a, and direction ωla, we first construct the coordinate
system as described above. We then index the table with the canonical spherical coordinates of ωla.
We draw an angle θb from the retrieved tabulated pdf, constrained to the interval θb ∈ [0;arccotuc]
(see Figure 9.4c), and transform it to a canonical distance ub = cotθb to obtain the desired propagation
distance along the ray tcb =−uc +ub. We finally need to transform the pdf from the angular measure
to the Euclidean length measure:

p(ub) = p(θb)

∣∣∣∣dθb

dub

∣∣∣∣= p(θb)
[
G(a,b)hca⊥

]
, (9.29)

where hca⊥ is the distance between a and the ray (Fig. 9.4c).

Tabulation for U2

is spherical pdf, used to sample the scattering direction ωcb at vertex c, is the anisotropic variant of
the pdf defined in Equation 9.15 and illustrated in Figure 9.3b. Once again, since we will normalize
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the pdf aer tabulation, we can ignore the division by the normalization factor p(tdc |Ξ). We therefore
seek to tabulate:

p(ωcb | tdc,Ξ)∝
∞∫

0

p(tdc,ωcb, tcb |Ξ)dtcb

∝ ρ(c)
∞∫

0

G(a,b)ρ(a)ρ(b)dtcb︸ ︷︷ ︸
P(ωcb)

(9.30a)

(9.30b)

where ρ(c) is in front of the integral on the second line, as it does not depend on tcb. is integral
P(ωcb) is the normalization of a pdf in our previous tabulation, U1, and can be readily looked up
without recomputation. e directional distribution is proportional to the product ρ(c)P(ωcb).

Table construction. Figure 9.4b shows the canonical coordinate system for the tabulation. e ori-
gin is at c, the z-axis is the direction from c to a, and the x-axis is coplanar with the z-axis and ωla. e
pdf family in Equation 9.30b then has three degrees of freedom: the direction ωdc and the angle θla
of ωla from the z-axis. We would thus need a 3D table of tabulated 2D pdfs, which is unfortunately
impractical in terms of both computation and storage. We address this problem by tabulating ρ(c) and
P(ωcb) separately, and sample from their product. We build a 1D table of spherical pdfs for P(ωcb),
indexed by θla, where for every tabulated direction ωcb we evaluate P(ωcb) by looking up the corre-
sponding pdf normalization from the U1 table. An intuitive interpretation of this process is that we
compute the single-scattered incident radiance field from a (omitting transmittance) at c, for a number
of lobe orientations at a. We store the pdfs in the table as fitted mixtures of von Mises Fischer (vMF)
distributions. is allows for both compact storage and efficient sampling from the product with the
vMF-fitted phase function, which can be easily rotated on-the-fly [140].

As we discussed in Section 9.3, this spherical pdf has a singularity around the pole. A naïve dis-
cretization would therefore result in a highly inaccurate approximation, as it cannot capture the in-
finite variation of the function. To make tabulation possible, we warp the domain using Equation 9.24:
ωu,v = ω(π(1−

√
u),2πv). With this change of variables, the pdfs we store are

p(ωu,v) = p(ω)
∣∣∣∣ dω
dωu,v

∣∣∣∣= p(ω)sinθcb. (9.31)

We found that for scattering anisotropy of g= 0.9, every pdf in the 1D table forP(ωcb) can be accurately
represented with 20 vMF lobes, and the phase function with 3 lobes. We fit a (randomly initialized)
vMF mixture to every tabulated spherical pdf using a standard iterative expectation-maximization
algorithm. Every iteration first computes the expectation of the directions under the current mixture,
followed by an update of the vMF parameters based on that expectation [4].

Sampling. Before sampling, we first transform the given configuration into the canonical coordinate
system and index the two tables to retrieve a product vMF distribution (Eq. 9.30b). We then sample
(u,v) with pdf p(u,v), which yields ωcb = ωu,v using the above transformation. e solid angle pdf of
the sampled direction is

p(ωcb) = p(u,v)
∣∣∣∣dudv
dωcb

∣∣∣∣= p(u,v)
[

π−θcb

π3 sinθcb

]
. (9.32)

Special case for ρ(a) = 1/4π. When the scattering at a is isotropic (e.g. it is a point light), the pdf
family (Eq. 9.30b) has only one degree of freedom, the angle θdc between ωdc and the z-axis. e
whole family can thus be stored in a compact 1D table of 2D pdfs, for a set of angles θdc, without the
need for product sampling.



134 Section 9.4: Tabulated sampling

Tabulation for U3

is last pdf in the marginalization chain is used to sample a distance along the ray (d,ωdc). It is the
anisotropic variant of the pdf defined in Equations 9.16a and 9.20 and illustrated in Figure 9.3a:

p(tdc |Ξ)∝
∫
S

∞∫
0

p(tdc,ωcb, tcb |Ξ)dtcb dωcb

∝
∫
S

p(ωcb | tdc,Ξ)dωcb.

(9.33a)

(9.33b)

e values of this pdf can be readily obtained by looking up in the corresponding normalizations from
the U2 table described above.

Table construction. egeometric configuration for this family of pdfs, illustrated in Figure 9.4a, is
identical to the one for tcb, andwe use the same coordinate system as in Figure 9.4c. e only difference
is that this time, in order to eliminate variations due to the geometry term, we reparameterize the
tabulation domain using a different transformation: v = asinhu. e stored pdfs are then

p(v(u)) = p(u)
∣∣∣∣du
dv

∣∣∣∣= p(u)
√

1+u2 = p(u)ta, (9.34)

where ta is the distance between the corresponding point along the ray and a.

Sampling. Sampling a distance tdc =−ud +uc along a ray (d,ωdc) proceeds analogously to the case
for tcb. We first construct the canonical coordinate system and retrieve the distribution corresponding
to ωla. We then sample vc from the corresponding tabulated pdf, constrained to the interval vc ∈
[0;asinhud], and compute uc = sinhvc. e line pdf of the sampled distance is:

p(tdc) = p(uc) = p(vc)

∣∣∣∣dvc

duc

∣∣∣∣= p(vc)

[
1

tca

]
. (9.35)

9.4.3 Bidirectional factorization

In the bidirectional factorization, we tabulate the factorized conditional pdfs in Equation 9.9 for the
joint pdf:

p(ωab, tab, tdc |Ξ) =CΞ G(b,c)ρ(a)ρ(b)ρ(c). (9.36)

As in the isotropic case, the conditional pdf B1 is the same as U1 but with different variable names. We
illustrate the coordinate system in Figure 9.5c for reference. We can thus readily reuse the pdf and CDF
tables and continue with the next pdf in the marginalization chain.
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Figure 9.5: Canonical coordinate systems for tabulating the conditional pdfs in the bidirectional factor-
ization (Eq. 9.9) of the joint pdf in Equation 9.5. For each configuration we construct a table indexed by
the entities colored in blue. Each table entry is a tabulated pdf used for sampling distances or directions.

Tabulation for B2

is pdf is used to sample a distance along a ray (a,ωab), given another ray (d,ωdc) (see Figure 9.2c).
Following the definition of conditional pdfs in Equation 2.38, we have:

p(tab |ωab,Ξ) =
p(ωab, tab,Ξ)

p(ωab,Ξ)
∝ p(ωab, tab,Ξ)

=
∫

G(b,c)ρ(a)ρ(b)ρ(c)dtdc ∝
∫

G(b,c)ρ(b)ρ(c)dtdc.

(9.37a)

(9.37b)

emarginal VRL pdf of Novák et al. [96] roughly corresponds to this pdf, with (d,ωdc) being the eye
ray and (a,ωab) the VRL. Unlike Novák et al., however, we take into account anisotropic scattering at
vertex b and consider the semi-infinite extent of the line (d,ωdc) (which Novák et al. approximate as
an infinite line). Our approach dramatically reduces variance, as we show in our results below.

Table construction. Figure 9.5b illustrates the geometric configuration. In the canonical coordinate
system, the x-axis is aligned with the shortest connecting line between (a,ωab) and (d,ωdc). e
origin o is the end of the connecting line on (a,ωab) and the z-axis is aligned with ωdc. Similarly
to the previous cases, an entire family of these pdfs exists, parameterized by the rays (a,ωab) and
(d,ωdc). Once again, the symmetries in the geometry configuration and scale invariance allow us to
parameterize this family of pdfs by only a few parameters. In fact, with Novák et al.’s assumption that
the ray (d,ωdc) is infinite, we would only need a single table parameter, the θab angle between ωab and
ωdc. However, the shape of the pdfs critically depends on the actual location of vertex d along the line
(d,ωdc). For that reason, we use the distance ud from the projection of the origin onto (d,ωdc) as an
additional parameter, and build a 2D table of 1D pdfs. For every combination of angle θab and distance
ud, the associated pdf assigns probability density to distance u from the origin on the (infinite) line
(a,ωab). We build a piecewise-linear approximation of this pdf by looking-up the integral (Eq. 9.37b),
to which the constructed pdf is proportional, from the previously constructed B1 table.

e pdf p(u) in the canonical coordinate system is defined over an entire infinite (a,ωab) line. To allow
tabulation, we map this to a finite domain by parameterizing the position u using v = asinhu. Using
this change of variables, the pdfs stored in the table are

p(v(u)) = p(u)
∣∣∣∣du
dv

∣∣∣∣= p(u)
√

1+u2 = p(u)to⊥ , (9.38)
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is is the same transformation as in Equation 9.34, with to⊥ denoting the distance between the cor-
responding point and o⊥ (Fig. 9.5b). Any possible variation in the tabulation is solely due to the
anisotropy of the phase function and the position of d along the line ωdc.

Sampling. Given two rays (d,ωdc) and (a,ωab), we construct the canonical coordinate system and
retrieve the distribution corresponding to θab and ud. We then sample vb from the tabulated pdf,
constraining it to the interval vb ∈ [0;asinhua], and compute ub = sinhvb. e line pdf of the sampled
distance tab =−ua +ub is

p(tab) = p(ub) = p(vb)

∣∣∣∣dvb

dub

∣∣∣∣= p(vb)

[
1

tbo⊥

]
. (9.39)

Tabulation for B3

e final pdf in the marginalization chain is used to sample a direction ωab at vertex a (Fig. 9.2c). We
seek to tabulate

p(ωab |Ξ) =
p(ωab,Ξ)

p(Ξ)
∝

∫
p(ωab, tab |Ξ)dtab

∝ ρ(a)
∫

G(b,c)ρ(b)ρ(c)dtab︸ ︷︷ ︸
P(ωab)

(9.40a)

(9.40b)

where ρ(a) is in front of the integral, as it does not depend on tab. Similarly to the case for U2, the inte-
gral on the second line, denoted P(ωab), is the normalization of a corresponding pdf in the B2 above,
and can be readily looked up. e desired distribution is proportional to the product ρ(a)P(ωab).

Table construction. Figure 9.5a shows the canonical coordinate system used for the tabulation.
e origin is at a, the z-axis is aligned with ωdc, and the x-axis lies in the same plane. e pdf fam-
ily (Eq. 9.40b) is then spanned by the direction ωla and the position of d along ωdc (given by the dis-
tance ud in the figure). Once again, this means that we generally need a 3D table of tabulated spherical
pdfs. Unfortunately, in this case the tabulated data cannot be efficiently represented by vMF mixtures,
necessitating a different (e.g. wavelet or anisotropic Gaussian based) product sampling approach. We
leave this for future work and build our pdf tables assuming isotropic scattering at a.

Similarly to the special case forU2, the problem reduces to constructing a 1D table of tabulated 2D pdfs,
this time indexed by the distance ud. e spherical distributions in this family have a singularity around
the z-axis, which is due to the sin−1 θ factor in analytic inverse CDF of Novák et al. [96]. We eliminate
this singularity by warping the spherical domain using the transformation ωu,v = ω(π

√
1−u,2πv).

With this change of variable, we store

p(ωu,v) = p(ω)
∣∣∣∣ dω
dωu,v

∣∣∣∣= p(ω)sinθab. (9.41)

Sampling. For this sampling decision, we are given a ray (d,ωdc) and a point a. Aer transforming
this input configuration into the canonical coordinate system, we retrieve a pdf by indexing our table
with ud. We then sample (u,v) with pdf p(u,v), yielding ωab = ωu,v using the above transformation.
e solid angle pdf of the sampled direction is

p(ωab) = p(u,v)
∣∣∣∣dudv
dωab

∣∣∣∣= p(u,v)
[

1
2π2 sinθab

]
. (9.42)
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Figure 9.6: Comparison of our analytic and tabulated importance sampling techniques against state-
of-the-art techniques in path tracing and virtual ray light (VRL) [96] renderers on a simple scene with
an infinite medium and an isotropic point light source. e number in each image indicates its relative
render time. Note the poor performance of the analytic techniques with anisotropic phase functions; our
tabulations perform particularly well, since in this case transmittance (not importance sampled) has a
smaller relative impact on the variability of the light transport.

9.5 Applications and results

e unidirectional and bidirectional sampling techniques described in the previous two sections pro-
vide an effective way to construct 3-random-decision connection subpaths. e most direct applica-
tion of this method is to compute single and double scattering in participating media by connecting
eye rays to random locations on light sources. is corresponds to the special case where the prefix and
postfix subpaths xl and xe introduced in Section 9.2 are both of zero length, i.e. a is on a light source
and d is on the eye lens.

ough our sampling routines do not currently consider chains of random decisions longer than 3,
we can still leverage them to improve higher-order multiple scattering. We do this by generalizing
deterministic (0-random-decision) shadow connections used in unidirectional and bidirectional path
tracing into 1-, 2-, and 3-random-decision subpaths connecting the endpoints of light and eye subpaths
of arbitrary lengths, as shown below.

In this section we describe how to incorporate our sampling routines for practical improvements in
rendering. We compare our enhanced algorithms to classical unidirectional and bidirectional path
tracing as well as VRL rendering. Figure 9.6 summarizes the connection techniques at our disposal,
demonstrating their ideal-case performance. (We omit the images from the bidirectional 3-random-
decision subpath technique, which produces similar results to the unidirectional 3-random-decision
subpath technique.) Table 9.1 summarizes the resolution, memory footprint, and computation time
for the pdf tabulations described in Section 9.4 above. All measurements have been obtained on a
mobile quad-core Intel Core i7-2820QM 2.3GHz processor using a CPU ray tracer.
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Table resolution Pdf resolution Memory Time
U1, B1 θla: 200, ϕla: 400 ub: 35 (avg) 22MB 320ms
U2 θla: 90 ωcb: 20 lobes 36KB 6 s
U3 θla: 90, ϕla: 180 uc: 100 13MB 580ms
B2 ud: 300, θab: 100 ub: 200 24MB 530ms
B3 ud: 100 θ: 200, ϕ: 400 32MB 680ms

Table 9.1: Resolution, memory footprint, and construction time statistics for the pdf tabulations illus-
trated in Figures 9.4 and 9.5.

9.5.1 Unidirectional path tracing

emost common forward path tracer uses unidirectional path sampling of transmittance and phase
function starting at the eye, combined with deterministic (0-random-decision) shadow connections (a
special case of Figure 9.1b). We use this algorithm as a baseline for our comparisons.

Figure 9.7 show a scene with isotropic (le) and highly anisotropic (right) phase functions and scatter-
ing albedo 0.57. Even with explicit (0-random-decision) shadow connections, traditional path tracing
suffers from significant spike noise as it cannot importance sample the geometry term or phase func-
tion when making the connection.

1 random decision
Our first extension to unidirectional path tracing incorporates 1-random-decision connection sub-
paths. We generate a random-walk path starting at the eye, just as with traditional unidirectional path
tracing. However, instead of connecting each subpath vertex to the light with a deterministic connec-
tion, we independently connect each subpath segment to the light using a 1-random-decision subpath,
sampled with the U1 technique. is corresponds to using (isotropic) equi-angular sampling or Novák
et al.’s [96] tabulated anisotropic generalization (Fig. 9.1c) as a vertex-segment connection technique
between an eye subpath and a light. As in previous work, we combine U1 with transmittance impor-
tance sampling via MIS.

is extension corresponds to interpreting previous work as a general vertex-segment connection tech-
nique. On top of this, our precomputed tabulation improves render time and affords a more accurate
approximation of the anisotropic pdf since we avoid coarse on-the-fly tabulation. e center columns
in Figure 9.7 show unidirectional path tracingwith such 1-random-decision connections. is reduces
RMS error by a factor of 4 to 6 (a 16× to 36× improvement in rendering convergence time) compared
to using only deterministic shadow connections.

2 and 3 random decisions
Our main contribution for unidirectional path tracing additionally incorporates our U2 and U3 sam-
pling techniques for up to 3-random-decision connections (Fig. 9.2b) between each eye subpath seg-
ment and a point on a light source. We also sample a 1-random-decision connection for the first eye
path segment to account for single scattering. We use Equations 9.22–9.25 for isotropic media and our
tabulated equivalents for anisotropic media. For each decision, we randomly choose between our dis-
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tance and direction sampling routines and the traditional routines (transmittance and phase function
sampling), and use the one-sample MIS balance heuristic to combine the estimates. e resulting al-
gorithm fully subsumes traditional (0-random-decision connection) path tracing, which corresponds
to always selecting the traditional techniques. By using our techniques, we can importance sample an
additional one, two or three random decisions for longer connections compared to previous work.

e right columns in Figure 9.7 show the result of rendering the D scene using our enhanced
3-random-decision connection path tracing. is provides a substantial variance reduction compared
to using just 1-random-decision connections, resulting in a 15× (isotropic) to 38× (anisotropic) re-
duction in total RMS error compared to deterministic shadow connections. is corresponds to a
225–1444× speedup in rendering convergence time.

e L scene in Figure 9.8 has an anisotropic light source and albedo 0.8, and Figure 9.9
shows the two sceneswith heterogeneousmedia; both figures show significant variance reduction using
our 3-connection techniques. For heterogeneous media, we do not use the transmittance tabulation of
Kulla and Fajardo [80], though a combination with our techniques would be interesting to investigate.
In Figure 9.10 we demonstrate longer bounces (path lengths 1–8) with and without our improvements.

9.5.2 Virtual ray lights

We incorporated our tabulated bidirectional sampling techniques into a many-light renderer. is
renderer generates random-walk subpaths from the lights with transmittance and phase function im-
portance sampling and stores these subpaths as a collection of VRLs. During rendering, eye rays are
connected to the VRLs using a one-sample Monte Carlo estimator. We refer to Novák et al. [96] for
the complete description of the VRL algorithm.

Our U1, U2, and U3 tabulations provide three concrete improvements over Novák et al.’s [96] approach:
(1) our tabulations of the joint VRL pdf (Eq. 4.21) are precomputed, affording higher precision and
avoiding expensive on-the-fly tabulation; (2) we eliminate approximations in themarginal distribution
(see Section 9.4.3), which significantly reduces noise; and (3) we can importance sample one additional
random decision – the emitted direction of the VRL – which allows us to sample VRLs relevant to the
viewpoint. We evaluate these improvements compared to a baseline VRL renderer.

In Figure 9.11, we compare Novák et al.’s approach to our improved 2-random-decision (le) and
3-random-decision (right) connections. emedium scattering albedo is 0.89. e right image in par-
ticular considers an uncorrected variation of VRLs, where a VRL is generated independently for each
eye ray, instead of using a single set of VRLs for the entire image. Our 3-random-decision technique
not only importance samples the connection between the eye rays and the VRLs but also the directions
of the VRLs themselves when they are sampled from the light sources. In both cases, we see substantial
quality improvement in the same rendering time.

9.5.3 Bidirectional path tracing

Bidirectional path tracing (BPT) also traditionally relies on deterministic connections (see Figure 9.1b),
but typically converges much faster than unidirectional path tracing, as it can combine many tech-
niques for sampling the same full light transport path. We will show that by incorporating segment-
segment 2-random-decision connections into BPT we can obtain significant variance reduction even
for this generally more robust algorithm.
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Our baseline for comparison is a standard bidirectional path tracer. Both the light xl and eye xe sub-
paths are created using transmittance and phase function importance sampling and then each pair of
vertices are coupled with a deterministic 0-random-decision connection to construct a full path from
a light to the eye. We combine all possible vertex-vertex connection path sampling techniques using
MIS with the balance heuristic.

1 and 2 random decisions

Instead of connecting each pair of vertices, we incorporate our B1 and B2 techniques for 2-random-
decision connections between each pair of segments on the light and eye subpaths, as illustrated in
Figure 9.1d. A light subpath segment defines vertex a and direction ωab, and an eye subpath segment
provides vertex d and direction ωdc. Given this configuration, we use our tabulated bidirectional fac-
torization (Sec. 9.4.3) to sample tab and tdc proportionally to the product of inverse squared distance,
G(b,c), and phase functions, ρ(b)ρ(c). We perform this connection for every eye-light segment pair.
is effectively converts VRLs from amany-light algorithm into a bidirectional segment-segment con-
nection technique, leveraging our more accurate and efficient tabulated joint pdfs. As with all our
other implementations, we combine transmittance and phase function importance sampling via MIS,
thereby subsuming 0- and 1-random-decision connections.

Figure 9.12 shows a scene with medium albedo 0.57 rendered with bidirectional path tracing. Even
though BPT is generally much more robust than unidirectional path tracing, incorporating our 2-
random-decision connections results in visible noise reduction; RMS error is reduced by roughly a
factor of 3.5 and 5 for path lengths of 1–3 and 1–8 respectively. is corresponds to 12× and 25×
improvement in rendering convergence speed.

9.6 Discussion

We conclude this chapter by summarizing the limitations of our method and some possible improve-
ments. We also briefly revisit the relations to neutron transport to aid a discussion on the convergence
rates of our techniques, based on some prior developments in that field.

Variance due to other terms

Although the geometry and scattering terms are oenmost responsible for excessive variance in partic-
ipating media, other terms can introduce high variance in certain scene configurations. For example,
transmittance sampling may outperform our techniques in some scenes with highly heterogeneous
and dense media. In scenes with uniform light emission (e.g. a constant environment map), tradi-
tional unidirectional sampling (Fig. 9.1a) will likely be the best strategy. We try to handle such cases
robustly usingMIS; however, by splitting samples acrossmultiple techniques we allocate fewer samples
to a potentially better technique. ough our method outperforms existing techniques in all our tests,
we obtained less benefit in scenes with a combination of caustic paths as well as surface-to-medium
transport, e.g. the noise visible near the floor and stools in the S scene in Figure 9.12.
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Longer connections
While our method is tailored to single and double scattering, in Figures 9.10 and 9.12 we demonstrate
practical improvement for path lengths of up to 8 by using our techniques as generalized “shadow
connections”. is improvement will likely diminish for even longer paths. However, since longer
paths also have smaller contribution, the final image will still benefit from our improvement in lower-
order scattering.

Anisotropic light sources
Our current implementation of the bidirectional factorization does not support 3-random-decision
connections when the scattering at vertex a is anisotropic. is is mainly a limitation of our imple-
mentation, not our theory. For this particular case we would need a product importance sampling
technique that is better suited to the shape of the distributions, e.g. the anisotropic spherical Gaussians
framework of Xu et al. [160].

Convergence rates
As discussed in Section 9.1.2, Kalos [68] showed that the UCF estimator (which corresponds to tradi-
tional unidirectional path tracingwith next event estimation) results in infinite variance in the presence
of light sources inside participating media. Moreover, in this case the central limit theorem does not
hold, leading to a substantially lower asymptotic convergence rate for volumetric path tracing than its
surface equivalent (1/ 3

√
N instead of 1/

√
N). By reducing the order of the singularity in the geometry

term, Kalos’ [68] OCF estimator provides bounded variance and recovers a 1/
√

N convergence rate.
Our techniques inherit this property by subsuming the OCF estimator. Nonetheless, a formal analysis
of the exact convergence rates of our methods would be interesting, especially in combination with
multiple importance sampling where singularities are further reduced by the balance heuristic. Dubi
et al. [27] and Rief et al. [115] also showed that the combination of path tracing and equi-angular sam-
pling retains the 1/

√
N convergence rate, despite the fact that this combination still leaves an angular

singularity and has infinite variance. Our techniques also employ equi-angular sampling but addi-
tionally remove this angular singularity in a way similar to Raab and Beikert [113] whose “detector
emphasis” technique importance samples directions near a point detector located in the medium.



142 Section 9.6: Discussion

0-connection
(traditional PT)

1-connection
(ours)

3-connection
(ours)

0-connection
(traditional PT)

1-connection
(ours)

3-connection
(ours)

0.3010 0.0697 0.0207 1.1900 0.187 0.0316

Anisotropic medium, g = 0.9 (30 min)Isotropic medium (15 min)

Figure 9.7: Single and double scattering in isotropic and anisotropic media, rendered with unidirectional
path tracing using traditional 0-random-decision connections and our extensions incorporating 1- and
3-random-decision connection subpaths. Our techniques achieve 5× to 37× reduction in RMS error
(bottom), corresponding to 25× to 1444× reduction in render time.
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Figure 9.8: A scene containing an anisotropic medium (g= 0.9) and an anisotropic point light, rendered
with unidirectional path tracing using the on-the-fly tabulated 1-connections of Novák et al. [96] (le) and
our improved pre-tabulated 3-connections (right).
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Figure 9.9: Two scenes with anisotropic (g = 0.9) heterogeneous media, rendered with single and double
scattering using unidirectional path tracing. In contrast to our improved (3-connection) techniques, the
traditional (0-connection) technique images miss most of the double-scattered illumination.
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Figure 9.10: eD scene with an isotropic and anisotropic medium, rendered with unidirectional
path tracing. We visualize path lengths 1–8 and compare the traditional (0-connection) sampling tech-
niques to our extended (3-connection) method.
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Figure 9.11: Our tabulated pdfs are more accurate than the ones of Novák et al. [96] and dramatically
reduce variance when making connections between VRLs and eye rays (le). When sampling an inde-
pendent VRL for each eye ray (right), our techniques allow us to importance sample the emitted VRL
direction to further reduce variance.
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Figure 9.12: An application of our sampling techniques to bidirectional path tracing. Importance sam-
pling more terms in the subpath connections achieves significant reduction in RMS error (bottom), corre-
sponding to 12× (le) to 25× (right) reduction in render time.
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Conclusion 10
e ever-growing demand for realistic-looking computer-generated imagery has been a driving force
for the research in physically-based rendering for decades. Significant advances have been made over
the last 30 years in this field, which is by now widely regarded as mature, yet robust light transport
simulation in arbitrary scenes has remained a highly challenging problem.

Various approaches for formalizing and solving the global illumination problem have been proposed.
One such approach is the path integral formulation of light transport, which expresses this problem
as an integral over all possible trajectories that connect the light sources in the scene to the eye. State-
of-the art rendering algorithms use Monte Carlo integration to compute one such high-dimensional
integral for every image pixel. e key to achieving efficiency with Monte Carlo methods is to care-
fully distribute the costly integration samples, i.e. paths, and the best-known method for doing that is
importance sampling.

In this thesis we investigated Monte Carlo path sampling techniques for efficient light transport simu-
lation. We expressed existing methods as sampling techniques in the path integral framework, devised
new importance sampling techniques for rendering surfaces and participating media, and combined
different techniques to obtain more robust, lower-variance light transport estimators. In this final
chapter we summarize the major contributions and results of this work, and discuss follow-up and
pertinent future work in addition to what has already been mentioned in the previous chapters.

Importance sampling for many-light rendering

Many-light methods decompose path sampling into a virtual point light (VPL) distribution stage and
a subsequent rendering stage that computes the contribution of all VPLs to the surfaces seen from the
eye. e fidelity of the resulting image depends on the number of VPLs as well as on the quality of their
distribution in the scene. In Chapter 5 we presented an importance-driven VPL resampling algorithm
that produces a set ofVPLs relevant for the chosen viewpoint, where everyVPLbrings roughly the same
amount of energy to the eye. is is achieved by probabilistically accepting or rejecting eachVPL based
on an on-the-fly estimation of its image contribution. e algorithm has low memory requirements, a
few intuitive parameters, and is easy to implement and integrate into an existing many-light renderer.
We demonstrated its ability to find relevant VPLs in scenes with difficult visibility configurations, and
saw rendering speed-ups of over an order of magnitude compared to traditional VPL distribution.

Producing high-fidelity images using many-light rendering oen requires thousands of VPLs. In such
cases the final rendering stage can become prohibitively expensive, even though typically only a small
fraction of all VPLs have significant contribution to any point in the scene. In Chapter 6 we presented
a method that aims to efficiently find the important VPLs for each point seen from the eye by ex-
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ploiting the illumination smoothness in the scene. e main idea is to evaluate and cache the exact
contributions of all VPLs at a sparse set of locations and then reuse these evaluations in the form of
importance to probabilistically select the few most relevant VPLs at other locations. Using the boot-
strap VPL evaluations, we devised several increasingly conservative VPL importance distributions to
ensure that sampling remains robust to illumination discontinues. We also proposed a novel multi-
ple importance sampling (MIS) heuristic to combine the many distributions gathered around a point
into a low-variance pixel estimator. Our importance caching method is best suited to highly occluded
scenes with complex non-uniform lighting, where visibility is oen a major source of variance in the
many-light estimator. Our implementation can deliver a good initial approximation in a matter of
seconds on a commodity CPU, while a simplified version of the method interactively renders accurate
and high-quality previews. e algorithm will also likely benefit from a GPU implementation, as all
its stages are inherently parallel.

One further potential improvement to our method would be to compute the gradients of the VPL
contributions at the importance records and use them to obtain better VPL importance estimates at
other locations via extrapolation [156, 50]. e challenge with this approach would be to efficiently
normalize the resulting extrapolated VPL probability distributions at each location.

Although many methods exist that exploit illumination smoothness, a unique property of our impor-
tance caching approach is that it does so in an unbiased way. is allows us to construct progressive
pixel estimators and obtain high-quality images with a bounded memory footprint. However, a cur-
rent limitation of all many-light renderingmethods, including ours, is the bias introduced by clamping
the VPL contributions, which makes the progressive pixel estimators inconsistent. We have addressed
this problem in a follow-up work [20] by devising a clamping relaxation scheme, similar to the ra-
dius reduction scheme in progressive photon mapping, which increases the VPL clamping threshold
at every rendering iteration. While a formal analysis of this formulation is still pending, we have exper-
imentally shown that clamping relaxation makes the many-light solution converge to a ground-truth
image as the number of rendering iterations increases.

Another interesting direction for extending our importance caching method in future would be to
further improve its scalability with the number VPLs. Currently, the time and memory costs of the
VPL importance evaluation and caching stage are linear to the number of VPLs. One way to improve
this could be to use the lightcuts approach ofWalter et al. [150] to cluster all VPLs hierarchically before
rendering. Instead of storing the contributions of individual VPLs, each importance record would
then store a cut in the light tree, i.e. the (approximate) contributions of entire VPL clusters. Sampling
a VPL at a shading point would then proceed in two steps: first selecting a cluster proportionally to
its recorded importance, and then choosing a VPL inside the cluster proportionally to its subpath
throughput (a.k.a. power) as in lightcuts.

Vertex connection and merging
Many global illumination approaches have been proposed that achieve outstanding rendering effi-
ciency via specially optimized solutions for certain illumination effects, e.g. indirect diffuse lighting or
specular caustics, but at the cost of ignoring or inefficiently handling other effects. Robust light trans-
port simulation under a wide variety of lighting configurations has remained an important and chal-
lenging problem. In Chapter 7 we addressed this problem by combining two state-of-the-art general-
purpose rendering methods: bidirectional path tracing and photon mapping. e key to an automatic
and effective combination is our reformulation of photon mapping as a pure Monte Carlo path sam-
pling technique, whichwe call vertexmerging. An important aspect of our vertexmerging formulation
is the derivation of a corresponding path pdf with an associated product areameasure that has the same
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unit as that of vertex connection – the family of path sampling techniques used in bidirectional path
tracing. is enables the application of multiple importance sampling to combine the two methods
into a practical unified rendering algorithm – vertex connection andmerging (VCM) –which employs
more path sampling techniques than bidirectional path tracing and photon mapping combined. We
showed that this algorithm ismore robust than either of these twomethods alone and demonstrated its
efficiency in handling a variety of lighting effects, ranging from direct illumination, diffuse and glossy
inter-reflections, to specular-diffuse-specular light transport. We believe that our solution has an im-
mediate practical utility in awide range of applications, especially in predictive rendering systems, both
interactive and offline, where robustness under different lighting setups is critical.

Our path integral formulation of photon mapping also brings new insight into the efficiency of this
algorithm which has been praised for its ability to render high-quality caustics. We showed that its
vertex merging technique is not intrinsically more robust than the techniques employed by bidirec-
tional path tracing; in fact, most light transport paths have a higher probability of being sampled by
vertex connection than by vertex merging. Rather, it is the photonmap implementation that allows for
efficiently reusing light subpaths to cheaply construct a large number of transport estimators for every
pixel, thereby amortizing the light subpath sampling cost over the entire image. is brings brute-force
variance reduction that is particularly beneficial for specular-diffuse-specular paths. ese paths are
notoriously problematic for bidirectional path tracing as none of the vertex connection techniques it
employs can sample them with high enough probability. e combined MIS estimator in VCM auto-
matically detects such cases and promotes vertexmerging techniques by assigning themproportionally
high weights.

An interesting and important property of our progressive VCM algorithm is that, even though it is
biased and uses a similar merging-radius reduction scheme as progressive photon mapping (PPM), its
error converges at a rate that is higher than that of PPM and equal to that of the unbiased bidirectional
path tracing. As we progressively shrink the radius at every rendering iteration, the power MIS heuris-
tic automatically compensates for the reduced efficiency of vertex merging by weighting its estimates
inversely proportionally to their expected variance. And while VCM is asymptotically equivalent to
bidirectional path tracing, we showed that it greatly benefits from the initial variance reduction brought
by vertex merging.

In Chapter 8 we discussed some important aspects of the practical implementation of our VCM algo-
rithm. We devised a recursive MIS path weight evaluation scheme that avoids redundant computa-
tions and minimizes random memory access to path vertices by accumulating partial weights during
the random walk based subpath sampling. is makes the evaluation of the MIS weight as efficient
as the evaluation of the subpath sampling throughput which already benefits from a similar accumu-
lation scheme. We also discussed the handling of special cases such as delta emission and scattering
distributions, and presented improvements and extensions to the VCM algorithm to reduce its mem-
ory usage, to automatically determine the merging radius for each path, and to support spectral and
motion blur rendering.

While our combined VCM algorithm is much more robust to different lighting conditions than each
of its ingredients alone, it does not perform better on paths that cannot be efficiently sampled by any
of the techniques at its disposal. ese techniques are all based on random walks, i.e. local sampling,
and are most efficient for constructing paths that contain at least one diffuse (or not too glossy) vertex
where two independently sampled subpaths can be joined. Inter-reflections between highly glossy
surfaces, or specular caustics falling on a glossy surface, are thus problematic for VCM, as they do
not contain any vertices with smooth scattering distributions. Such paths are oen better handled
by Markov chain Monte Carlo (MCMC) methods [145, 13, 57, 88, 43, 71], which provide approximate
global importance sampling of themeasurement contribution of entire paths. An interesting avenue for



150

future work would therefore be to employ MCMC sampling on top of VCM.is would also improve
the algorithm’s performance on large and highly occluded environments which are notoriously difficult
for methods based on sampling subpaths from light sources.

Our exposition in Chapters 7 and 8 was mostly focused on surface rendering, yet extending our com-
binedVCMalgorithm toperformvertex connection andmerging in participatingmedia is fairly straight-
forward. However, our preliminary effort in this direction has revealed that vertex merging can be
much less beneficial in media than it is on surfaces. e intuitive explanation is that sampling a pho-
ton location in a medium requires an additional propagation distance sampling decision. As a result,
the probability for a photon landing inside the merging sphere around an eye subpath vertex can be
extremely low, causing volumetric caustics to appear much noisier when seen through a reflection or
a refraction than when seen directly from the eye. (Recall from our results in Chapter 7 that directly
visible caustics are generally more efficiently sampled via vertex connections to the eye.) We have ad-
dressed this problem in a recent follow-up work [84], where we have augmented VCM with a variety
of more sophisticated volumetric path sampling techniques based on photon points and beams. In
this work we have shown that, just like vertex connection and vertex merging, the strengths and weak-
nesses of these individual techniques complement each other on scenes containing different kinds of
media, which makes the case for combining them into a unified rendering algorithm via MIS. e re-
sulting unified points, beams, and paths (UPBP) algorithm employs an extension of MIS that combines
estimators of different dimensionality in a meaningful and provably good way. is MIS formulation
takes the individual estimators in their original form, without the need to express their path pdfs w.r.t.
a common measure as was necessary for our VCM formulation in Chapter 7.

Joint path sampling in participating media
ForMonte Carlo estimation of the light transport integral, importance sampling theory postulates that
the joint path vertex density should be ideally proportional to the measurement contribution function.
However, existing methods use local sampling techniques that generate path vertices one by one, with-
out explicit control over their final joint distribution. In Chapter 9, we revealed that this traditional
incremental path construction can lead to high variance and slow error convergence, especially in par-
ticipating media where geometric singularities are even more pronounced than on surfaces and where
anisotropic scattering further increases the variation in the path contribution. We then showed that
joint path vertex sampling in media is feasible, by devising global importance sampling techniques
for the product of geometry and phase function terms along sequences of path vertices. We obtained
conditional vertex sampling pdfs via successive marginalization of a prescribed joint path distribution.
We derived simple analytic expressions for unidirectional path construction in isotropic media, and
introduced a compact tabulation scheme to handle anisotropic scattering and bidirectional sampling.
Our method exploits various geometric symmetries in participating media to make the numerical tab-
ulation of such high-dimensional joint distributions practical. We demonstrated the integration of our
path sampling techniques into various rendering algorithms, and observed a variance reduction of up
to three orders of magnitude compared to currently used techniques. Our recently proposed UPBP
algorithm, discussed above, could also benefit from these new sampling techniques.

Recent related work has shown that the traditional point-based subpath connection approach is in
fact a legacy of surface-based rendering, and that significant improvements are possible once path seg-
ments are considered as fundamental entities of the light transport simulation process [96, 95]. To
improve sampling efficiency, these methods perform subpath connections by considering not only
subpath vertices but also entire (semi-infinite) segments. In Chapter 9 we provided a unifying view
of these methods as vertex-segment and segment-segment connection techniques that construct con-
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nection subpaths involving up to two random sampling decisions. e techniques we then developed
further improve efficiency by jointly importance sampling longer connection subpaths involving three
sequential random decisions.

We believe that our theoretical and practical contributions create a promising new direction of future
work on path sampling inmedia and global path sampling in general. In particular, it could be possible
to extend our techniques to jointly importance sample longer connection subpaths with more than
three random decisions by successively marginalizing the corresponding higher-dimensional product
distributions. e theoretical challenge is to derive either analytic expressions or proper tabulation for
the resulting conditional pdfs. It would be interesting to also include the transmittance term in the joint
product densities. Our theoretical framework could be used as a stepping stone for such developments.

Final words
In the times when ray tracingmethods were too slow to be practical, artists had to rely on rasterization-
based rendering technology that could only reproduce a limited set of effects efficiently and required ar-
duous illumination tweaking, complex asset management, andmulti-pass rendering. e selling point
for physically-based Monte Carlo methods has been their ability to provide a full global illumination
solution in a single rendering pass, without excessive tweaking and post-render image compositing.
Now that these methods have become the new standard in production rendering, there is a high de-
mand for efficient and practical algorithms that can deliver high-quality results in an automated way.

It is the author’s contemplation that a rendering method should fulfill the following general require-
ments in order to remain widely usable in practice: (1) it should have few parameters and (2) the ac-
curacy of the produced images should only be bounded by computation time and not by the amount
of systemmemory available. e first requirement ensures that the method is easy to control, which is
a necessary condition for robustness – a method that relies on laborious scene-dependent parameter
tweaking to be efficient can hardly be qualified as robust. e second requirement ensures that the
method can deliver results of arbitrarily high quality with enough investment in computation time.
It also increases the likelihood that the method will scale well on future commodity hardware whose
computational power has been increasing at a higher rate than the size and speed of its memory.

Based on the results of this thesis, the author sees several promising research directions which can
lead to the development of more efficient and more robust rendering algorithms that meet the above
requirements. First, the potential of global, or joint, path importance sampling through successive
marginalization remains largely unexplored, especially for rendering participating media. Such tech-
niques can be used in ordinary Monte Carlo methods, as we have demonstrated, but also in Markov
chain methods – another global sampling approach – to provide better seed paths or to serve as a
base for improved path mutation strategies. Second, mixing multiple path sampling techniques, each
tailored to a different set of lighting effects, is currently the best-known approach to maintaining effi-
ciency on a wide range of input scenes. Devising specialized techniques for effects that remain diffi-
cult to sample, such as inter-reflections between highly glossy surfaces, along with novel combination
heuristics, is a natural course of advancing the current state of the art. Finally, while consistency with
bounded memory footprint is an important requirement for a practical Monte Carlo algorithm, in
the author’s view, strictly unbiased consistency is not. Aer all, most existing biased light transport
estimators are, by design, oen more efficient than their unbiased alternatives. e author therefore
envisions future state-of-the-art practical rendering algorithms to rely on intelligent combinations of
various light transport estimators that are consistent but not necessarily unbiased.
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