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Figure 1: Transmittance (left), single-scatter of a point light source (middle), and multiple-scatter (right) calculation for 12-octave Perlin-
noise medium and comparison to Woodcock tracking with equal number of medium fetches.

Abstract
This paper presents a new stochastic particle model for efficient and unbiased Monte Carlo rendering of heterogeneous par-
ticipating media. We randomly add and remove material particles to obtain a density with which free flight sampling and
transmittance estimation are simple, while material particle properties are simultaneously modified to maintain the true expec-
tation of the radiance. We show that meeting this requirement may need the introduction of light particles with negative energy
and materials with negative extinction, and provide an intuitive interpretation for such phenomena. Unlike previous unbiased
methods, the proposed approach does not require a-priori knowledge of the maximum medium density that is typically difficult
to obtain for procedural models. However, the method can benefit from an approximate knowledge of the density, which can
usually be acquired on-the-fly at little extra cost and can greatly reduce the variance of the proposed estimators. The introduced
mechanism can be integrated in participating media renderers where transmittance estimation and free flight sampling are
building blocks. We demonstrate its application in a multiple scattering particle tracer, in transmittance computation, and in
the estimation of the inhomogeneous air-light integral.

1. Introduction

Physics aims at establishing laws that describe natural phenom-
ena. These laws can be simulated to create realistic behavior. It
is also possible to define laws that are different from those of na-
ture, but their simulation still results in the same expected behavior
that nature would produce. The rationale for these structurally im-
plausible but behaviorally valid models is the simplification of the
simulation process. This paper aims at establishing such laws to
render inhomogeneous participating media, which is a challenging
problem [CPP∗05,SKSU05,Fat09]. Analytic solutions are possible
only for homogeneous volumes and in special cases [PP09]. Nu-

merical approaches are usually based on Monte Carlo quadratures
and trace photons or importons (i.e. visibility rays) randomly in the
medium [JC98, PKK00, QXFN07]. To obtain estimates, we need
to calculate the attenuation of the radiance between two points,
called transmittance, and the probability density of the photon’s
free flying in the medium. Monte Carlo methods fetch the param-
eters of the media at discrete points, which can be expensive when
the model is procedural. On the other hand, many rays are traced
through a pixel for anti-aliasing, motion blur, and complex lighting
effects. Thus, there is a need for free flight sampling and transmit-
tance computation methods that process a ray with a small number
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of data fetches, but provide unbiased and preferably low variance
estimates that can be averaged into an accurate result.

To attack these problems, we modify the underlying model of
the participating media to reduce the number of required fetches.
Unlike other methods also modifying the model [ZRB14], our ap-
proach aims at the preservation of the expectation in Monte Carlo
simulation, which provides additional freedom for model manipu-
lation. The objective of this work is to devise unbiased methods for
the computation of scattered and transmitted radiance.

Our main contributions are:

• A mechanism for randomly adding and removing material parti-
cles while simultaneously modifying their properties to produce
media of arbitrary density where the Monte Carlo light transport
provides the true expected values.
• Unbiased particle tracing, free flight sampling, and single scat-

tering estimation methods that do not require an a-priori upper
bound for the density.
• A variance analysis of the proposed estimators.
• The application of control variates to scattered radiance compu-

tation, which may require negative extinction.

The paper is structured as follows. In Section 2 we define the
target problems and survey the previous work on free fight sam-
pling and transmittance estimation. Section 3 presents our mecha-
nism for random medium manipulation and the variance analysis.
Among applications, Section 4.1 explains how the medium manip-
ulation can be applied in a multiple scattering particle tracer. Sec-
tion 4.2 considers the special problem of transmittance estimation.
Finally, Section 4.3 addresses the scattering of light emitted by a
single point source, which is a building block of efficient global
illumination rendering.

2. Problem statement and previous work

In participating media, radiance L of point~e and direction ~ω is the
contribution gathered by a ray ~p(s) =~e−~ωs of length S:

L(~e,~ω) = T~e,~ω(S)L(~p(S),~ω)+

∫ S

0
T~e,~ω(s)σt(~p(s))a(~p(s))

∫
Ω

L(~p(s),~ω′)ρ(~ω,~ω′)dω
′ds (1)

where σt(~p) is the extinction coefficient, a(~p) is the albedo,
ρ(~ω,~ω′) is the phase function, and

T~e,~ω(s) = exp
(
−

∫ s

0
σt(~p(τ))dτ

)
(2)

is the transmittance between points ~e and ~e−~ωs. The integral in
the exponent is called the optical thickness.

Radiance estimation according to Equation 1 requires sampling
points ~p(s) along the ray. One possibility is to sample s with

pdf(s) = σsamp(~p(s))exp
(
−

∫ s

0
σsamp(~p(τ))dτ

)
, (3)

which is the probability density of the free flight in the medium
with extinction coefficient σsamp(~p(s)). If σsamp is equal to real ex-
tinction σt , then the transmittance T~e,~ω(s) is canceled in the Monte

Carlo quadrature. Sampling with this pdf can be done by the in-
version method, which requires a random number ξ uniformly dis-
tributed in [0,1) and the solution of the following sampling equa-
tion for s:

− log(1−ξ) =
∫ s

0
σsamp(~p(τ))dτ. (4)

In practice, σsamp is often different from σt to allow the analytic
solution of the above sampling equation.

Ray marching approximates the optical thickness by stepping
along the ray, assuming that the density between the steps is con-
stant. Even with an unbiased estimate of the optical thickness, this
algorithm is biased [RSK08], since the transmittance is an expo-
nential, i.e. non-linear function of the optical thickness. To reduce
the amount of bias, an excessive number of steps may be required
if the medium density has high-frequency variations.

Woodcock tracking [WMHL65, Col68] (also called fictitious in-
teraction tracking or delta-tracking) is an unbiased alternative to
ray marching. Woodcock tracking advances in the medium with
random-length steps and decides randomly at each visited point
whether a real or fictitious collision happens. The expected length
of the random steps is determined by the majorant extinction co-
efficient of the medium. Tight majorants are usually difficult to
get especially for procedural media, and non-tight majorants make
Woodcock tracking prohibitively inefficient.

Yue et al. [YIC∗10] proposed building a kd-tree to find regions of
different majorant extinctions. However, this approach requires the
inclusion of a fictitious scattering at each intersected region bound-
ary, where a new random sample needs to be generated and the
sample process repeated, which degrades performance when the
ray crosses many regions.

In [SKTM11] Woodcock tracking has been generalized to allow
arbitrary upper bounding extinction coefficient function by intro-
ducing virtual particles that modify the material density but do not
change the radiant intensity. That paper addressed free flight sam-
pling as well as transmittance estimation with separating the main
part, i.e. the concept of control variates. In this approach, we ex-
press the real extinction σt(~p) as a sum of an analytically integrable
main or control extinction σmain(~p) and a difference extinction:

σdiff(~p) = σt(~p)−σmain(~p). (5)

As the transmittance is the exponential of the negative extinction’s
integral, it will be the product of the transmittance due to the main
extinction and the transmittance of the difference extinction.

Novák et al. [NSJ14] considered transmittance estimation only
and proposed modifying the weights of light particles instead
of randomly terminating them in their ratio tracking method. In
physics, Morgan et al. [MK15] investigated the same weighting
scheme, and Galtier et al. [GBC∗13] showed the possibility of lift-
ing the requirement of the majorant in their integral formulation.
Novák et al. [NSJ14] also combined the weighting scheme with
control variates in their residual ratio tracking method.

We build primarily on the results of [SKTM11, NSJ14] and
present a probabilistic framework to attack not only the transmit-
tance but also the scattering without requiring majorants, and al-
lowing negative cross sections as well. The presented framework
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subsumes existing methods like Woodcock or residual ratio track-
ing as special cases, provides intuitive insights into them, and al-
lows for easy proof of unbiasedness as well as variance analysis.
Not only is this approach of theoretical interest, but it also has im-
portant practical advantages. Majorants of procedurally generated
media are difficult or even impossible to get, and our method ex-
tends the applicability of unbiased sampling for these media.

3. The method of random medium manipulation

Participating media can be imagined as collections of material par-
ticles with which light particles may collide. The probability of
collision is proportional to the density of material particles. Upon
collision, a light particle can be absorbed or scattered, changing
its properties. Light particles have three properties relevant for us:
position, direction, and energy. An analog model would state:

• Upon collision, the light particle survives with probability equal
to albedo a, its direction is modified randomly according to the
phase function, and the energy of the scattered particle Escat will
be equal to the energy of the incident particle E in.
• Direction and energy do not change while the light particle trav-

els in free space.
• With probability 1−a the light particle is terminated.

Transmittance estimation and free flight sampling depend just
on the density of the material particles, so these operations can be
made simpler by changing the material particle density. We mod-
ify the real extinction σt to a sampling extinction σsamp that is ap-
propriate for free flight sampling and transmittance estimation. Si-
multaneously, the medium parameters and collision laws are also
altered to ensure that the expectation of the measured energy is
preserved despite the modification of the extinction function. Un-
biasedness is guaranteed if the behavior of free-space flight and
the expected scaling of the energy at every direction upon a colli-
sion are preserved and random medium modifications are statisti-
cally independent. We introduce two random operations, one that
increases the density and another one that reduces it, allowing to
replace the real extinction by an arbitrary sampling extinction.

3.1. Adding virtual material particles

This operation adds virtual particles of albedo 1 and Dirac-delta
type phase function (Figure 2). Virtual particles modify neither the
energy nor the direction of the light particle during interaction, thus,
they can be added safely to the medium without compromising the
result of the Monte Carlo simulation. By adding virtual particles the
density and consequently the extinction of the material is increased
from σt(~p) to σsamp(~p) by the density of virtual particles.

Let us denote the ratio of the real density and the sampling den-
sity by r, which is in [0,1] when virtual material particles are added:

r(~p) =
σt(~p)

σsamp(~p)
. (6)

We will omit the dependence of r on ~p to simplify the notation.

Whether a collision happens on a real or a virtual parti-
cle can be decided randomly, proportionally to the densities. At
point ~p, the interacting material particle is real with probability

Light
particles

E in
Virtual
particle

Material
particle

E in

E in

E in

E in

E scat

E tran

E in

Add virtual 
particles

Rao-
Blackwell

Double Particle
Model

E in E in E in E in

Density: σ Density: σ Density: σt samp samp

Figure 2: Adding virtual material particles of Dirac-delta phase
function and albedo 1 increases the medium density but preserves
the expected radiance. Rao-Blacwellization replaces the three ran-
dom cases of scattering, transmission and absorption by weighting.

σt(~p)/σsamp(~p) = r and is virtual with probability 1− r. A real
material particle absorbs or scatters the light particle, while a vir-
tual particle transmits it. The rules of interaction specify the energy
of the scattered light particle Escat, the energy of the transmitted
particle E tran, and their probabilities:

Escat = E in, E tran = 0 with prob ar, (7)

Escat = 0, E tran = E in with prob 1− r,

Escat = 0, E tran = 0 with prob (1−a)r.

A common variance reduction technique is the substitution of
a random variable by its mean in an estimator, which is known
as Rao-Blackwellization. In particle tracing this concept replaces
random decisions by weights, giving back the expectation of the
decisions. We call the resulting scheme the Double Particle Model
since at each interaction the incident light particle is broken into a
scattered particle and to a transmitted particle:

Escat = arE in, E tran = (1− r)E in. (8)

Note that the second equation is similar to ratio tracking [NSJ14],
but we handle also scattering and allow arbitrary σsamp(~p) func-
tions while that method considered only the transmission with a
constant majorant sampling extinction. The two particles pose no
problem in case of transmittance estimation when only the trans-
mitted particle is tracked, but can lead to an exponential growth of
the particle number if scattered light paths are also simulated.

To keep the number of light particles under control, we random-
ize the collision process and keep at most one of the two offsprings.
The Single Particle Model scores a random decision with three ex-
clusive outcomes: only the scattered light particle is kept with prob-
ability qscat, only the transmitted light particle survives with proba-
bility qtran, and both light particles are terminated with probability
1− qscat − qtran (Figure 3). The energies should be compensated
accordingly:

Escat =
arE in

qscat
, E tran = 0 with prob qscat, (9)

Escat = 0, E tran =
(1− r)E in

qtran
with prob qtran,

Escat = 0, E tran = 0 with prob 1−qscat−qtran.
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Ein

arE

(1-r)E tran

E in

prob q

Double Particle Model

scat

prob qtran

otherwise

E scat

in

Only in the terminating version

Single Particle Model

Figure 3: The Single Particle Model is the randomization of the
Double Particle Model. Randomization is the inverse of Rao-
Blacwellization, but can use different probabilities. Only the ter-
minating version allows particles to be absorbed.

We consider two versions for the probabilities. The terminating
version sets qscat = ar and qtran = 1− r, restoring Equation 7 and
making the energy of the surviving light particle equal to that of the
incident particle. The non-terminating version sets qscat = ar/(ar+
1− r) and qtran = (1− r)/(ar+1− r) making sure that exactly one
particle survives at each interaction and its energy is independent
of whether scattering or transmission happened.

3.2. Randomly removing material particles

If we want to reduce the medium density making r greater than
1, we keep a material particle with probability σsamp(~p)/σt(~p) =
1/r and remove it with probability 1− 1/r, while modifying the
scattering mechanism when the particle is not removed (Figure 4).

Light
particles

E in

Material
particle

E in

E in

E scat

E tran

Remove particle
with prob 1-r Double Particle

Model

E in

E in E in

Density: σ Density: σt samp

Figure 4: Randomly removing real particles decreases the density
but preserves the expected radiance if interaction rules are simul-
taneously modified.

As the probability of keeping the real particle is 1/r, the preser-
vation of the expectation of scattered energy aE in requires the mul-
tiplication by r:

Escat = arE in. (10)

On the other hand, if the material particle is removed, which hap-
pens with 1− 1/r probability, the light particle can go through the
empty space resulting in a superfluous light particle having the orig-
inal energy and direction, which causes (1−1/r)E in extra expected
energy in the transmission direction. To compensate for this, we
have to emanate light particles with negative energy E tran when the
material particle is preserved, which happens with probability 1/r.

The expected energy into the transmission direction should be zero:(
1− 1

r

)
E in +

1
r

E tran = 0 ⇒ E tran = (1− r)E in. (11)

Note that Equation 8 of the Double Particle Model is equivalent
to Equations 10 and 11, so it remains valid also for the case when
material particles are randomly removed.

If tracking the increasing number of particles poses problems,
we can randomly keep at most one at each interaction, which leads
again to the Single Particle Model defined by Equation 9. How-
ever, now the choice for qscat and qtran is limited. The terminat-
ing version needs qscat = ar and qtran = |1− r|. Probabilities qscat,
qtran, and 1− qscat − qtran must be in [0,1], which imposes the
requirement r ≤ 2/(a+ 1). The non-terminating version requires
qscat = ar/(ar+ |1− r|) and qtran = |1− r|/(ar+ |1− r|), and can
be used for arbitrary positive r.

Equations 8 and 9 provide a compensation mechanism to replace
σt with σsamp that is convenient for free flight sampling and trans-
mittance estimation.

3.3. Negative extinction

If a control variate is used, the difference extinction defined in
Equation 5 may also be negative, so the participating medium mod-
ification mechanism must be generalized to include this case as
well. In a medium of positive extinction light decays, while in ma-
terial of negative extinction light is amplified similarly to a chain re-
action. Establishing a material particle model for this case requires
special considerations as it has no direct physical interpretation.
First, we consider the Double Particle Model.

Let us realize that if we mix material of positive extinction σt(~p)
with material of negative extinction−σt(~p), then we should get the
behavior of the empty space when σt = 0.

The rules for zero extinction say that the direction and the energy
of the light particle are preserved, i.e.

Escat
σt=0 = 0, E tran

σt=0 = E in.

The rules for positive extinction are summarized as:

Escat
σt>0 = a|r|E in, E tran

σt>0 = (1−|r|)E in.

The rules for negative extinction can be obtained from the re-
quirement that the total effect of a light particle colliding accord-
ing to the rule of positive extinction and another light particle with
the same energy colliding according to the rule of negative extinc-
tion should be equivalent to the total effect of applying the rules of
empty space to the two light particles:

Escat
σt>0 +Escat

σt<0 = 2Escat
σt=0, E tran

σt>0 +E tran
σt<0 = 2E tran

σt=0.

Solving these equations for the negative case, we get:

Escat
σt<0 = −a|r|E in = arE in,

E tran
σt<0 = 2E in− (1−|r|)E in = (1− r)E in

since σt and r are negative now.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



L. Szirmay-Kalos et al. / Unbiased Light Transport Estimators for Inhomogeneous Participating Media

Note that Double Particle Model equations are valid also for the
negative case. However, when the extinction and consequently r are
positive, the radiance intensity is decreased, for negative extinction
and r, it is increased.

The Double Particle Model can be randomized to obtain the
Single Particle Model also for negative extinction if the non-
terminating option is taken:

qscat =
a|r|

a|r|+ |1− r| , qtran =
|1− r|

a|r|+ |1− r| . (12)

However, the terminating version is not applicable for negative ex-
tinctions since its resulting qtran = |1− r| would be greater than 1,
which cannot be a probability.

3.4. Variance analysis

Randomly modifying the medium affects not only the cost of sim-
ulation but also the variance of the radiance estimates. This section
provides formulas for the variance of the transmittance at an arbi-
trary point along a ray. We consider the change of the expectation
and the variance when we make an infinitesimal step along the ray,
establishing a differential equation for the unknown variance that
has a closed from solution.

Let us consider the expectation T (s) = E
[
T̂ (s)

]
and variance

V (s) = V
[
T̂ (s)

]
of sampled transmittance T̂ (s) at distance s. The

sampled transmittance is a random variable, which is updated with
the following formula when s is increased by ds:

T̂ (s+ds) = T̂ (s)W (s,ds)

where W (s,ds) is a random variable describing the transmittance of
differential interval [s,s+ ds) since the transmittance is the proba-
bility of survival, so merging two intervals, the resulting transmit-
tance is the product of the respective transmittances. The random
variable W (s,ds) is independent of T̂ (s), thus the expectation and
the variance of the transmittance at s+ds are

E
[
T̂ (s+ds)

]
= E

[
T̂ (s)

]
E [W (s,ds)] ,

V
[
T̂ (s+ds)

]
= V

[
T̂ (s)

](
V [W (s,ds)]+E2 [W (s,ds)]

)
+

V [W (s,ds)]E2 [T̂ (s)] , (13)

where we use that for two independent random variables X and
Y , the identities E[XY ] = E[X ]E[Y ] and V[XY ] = V[X ]V[Y ] +
V[X ]E2[Y ]+V[Y ]E2[X ] hold.

Since our models are unbiased, the expected transmittance of
[s,s+ds) is equal to the probability of no interaction:

E [W (s,ds)] = 1−σt(~p(s))ds,

and the expected transmittance is equal to the real transmittance:

E
[
T̂ (s)

]
= T (s) = exp

(
−

∫ s

0
σt(~p(τ))dτ

)
.

Substituting these and shorthand notations T (s) = E
[
T̂ (s)

]
and

V (s) = V
[
T̂ (s)

]
into Equation 13, we obtain:

V (s+ds) = V (s)
(

V [W (s,ds)]+ (1−σt(~p(s))ds)2
)
+

V [W (s,ds)]T 2(s).

Subtracting V (s) from both sides, dividing the equation by ds and
taking the ds→ 0 limit, we can establish the following differential
equation for the variance of the transmittance:

dV
ds

=V (s)(w(s)−2σt(~p(s)))+w(s)T 2(s), (14)

where

w(s) = lim
ds→0

V [W (s,ds)]
ds

(15)

is the variance introduction density, which is the only function in
this equation that depends on the sampling method, while σt(~p(s))
and T (s) depend just on the medium. This differential equation can
be solved analytically:

V (s) = T 2(s)
(

exp
(∫ s

0
w(τ)dτ

)
−1
)
=

exp
(
−

∫ s

0
2σt(~p(τ))dτ

)(
exp
(∫ s

0
w(τ)dτ

)
−1
)
. (16)

If we use a control variate, then sampled transmittance T̂ (s)
is the product of the analytically computed main transmittance
Tmain(s) and the sampled transmittance T̂diff(s) of the difference
extinction. Thus, the variance of the sampled transmittance is the
product of the square of the the main transmittance and the variance
obtained by replacing the real extinction with the difference ex-
tinction, i.e. V (s) = T 2

main(s)Vdiff(s). However, as T 2
main(s)T

2
diff(s) =

T 2(s), we can come to the conclusion that Equation 16 remains
valid also with a control variate, just the real extinction should
be replaced by the difference extinction when variance introduc-
tion density w is calculated. If the difference extinction is zero, i.e.
the control variate is equal to the real extinction, then the variance
introduction density is also zero, which means that the proposed
method gives back the zero variance analytic solution.

The variance is said to be stable, i.e. bounded on an arbitrarily
long ray if the exponents are negative, i.e. w(s)≤ 2σt(s). We have
to emphasize that it makes sense to use unstable methods as well if
the length of the interval where stability does not hold is limited.

Double Particle Model: In the Double Particle Model, the
light particle does not interact with material particles in [s,s +
ds), i.e. there is no change of the sampled transmittance
(Wdouble(s,ds) = 1) with probability 1− σsampds, and interaction
happens with probability σsampds when the transmittance is scaled
with Wdouble(s,ds) = 1− r both for positive and negative differ-
ence extinctions. The expectation of the transmittance of ds in the
material of the difference extinction is 1−σdiffds. The variance of
Wdouble(s,ds) is then

V [Wdouble] = 12(1−σsampds)+(1− r)2
σsampds− (1−σdiffds)2.

The variance introduction density is the limit of the ratio of the
introduced variance and ds:

wdouble(s) = lim
ds→0

V [Wdouble]

ds
= σsamp(r2−2r)+2σdiff = σdiffr

(17)
since σsampr = σdiff. When σdiff is negative, r = σdiff/σsamp is also
negative, making w always positive. The variance introduction den-
sity of the Double Particle Model is symmetric, and can be made
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arbitrarily small by reducing |r|, i.e. increasing the sampling den-
sity and processing proportionally more samples.

Single Particle Model: In the Single Particle Model, there is no
interaction (Wsingle(s,ds) = 1) with probability 1−σsampds, and in-
teraction happens with probability σsampds when the transmittance
is scaled by Wsingle(s,ds) = (1−r)/qtran with probability qtran, thus
the variance of Wsingle(s,ds) is

12(1−σsampds)+
(

1− r
qtran

)2

qtranσsampds− (1−σdiffds)2.

The variance introduction density is then

wsingle(s) = lim
ds→0

V
[
Wsingle

]
ds

= σdiff

(
2− 1

r
+

(1− r)2

rqtran

)
. (18)

The terminating version is applicable only for non-negative ex-
tinctions (r ≥ 0) and sets qtran = |1− r|, which leads to

wsingle =

{
σdiff if r ≤ 1,
σdiff(3−2/r) if r ≥ 1.

(19)

This means that it is not worth increasing the sampling density be-
yond the threshold of the majorant case, i.e. reducing r below 1,
because the variance remains the same, but the sampling cost in-
creases.

The non-terminating version can work both for non-negative and
negative extinctions. Substituting its transmission probability form
Equation 12 into Equation 18, we obtain

wsingle = |σdiff|(|r|+a|1− r|) . (20)

Note that due to the |1−r| term the variance introduction density of
the Single Particle Model is asymmetric, preferring the positive dif-
ference extinctions especially in high albedo media. Unlike in the
Double Particle Model, increasing the sampling density can sig-
nificantly reduce the variance only for low albedo media since the
variance introduction density has a lower bound of |σdiff|a when |r|
goes zero. As the sampling cost increases for lower |r| values, for
high albedo media, the optimal choice is r ≈ 1.

Comparing the terminating (Equation 19) and non-terminating
(Equation 20) options, we can see that the terminating option is
better for the minorant case (r > 1) and the non-terminating for the
majorant case (r < 1).

Optimal control variate: The variance is a monotonically increas-
ing function of the integral of w(s), which is the only factor that
depends on the actual strategy. Thus, the optimal choice can be
found by minimizing this integral. For the sake of simplicity, let
us assume that sampling density σsamp is constant and consider the
Double Particle Model:∫ s

0
w(τ)dτ =

∫ s

0

σ
2
diff(τ)

σsamp
dτ =

1
σsamp

∫ s

0
(σt(τ)−σmain(τ))

2 dτ.

This integral is minimal if σmain(s) is an optimal approximation
of real extinction σt(s) in L2 sense. If the control variate is con-
stant, its optimal value is the mean of the real extinction. Note that
unlike for conventional application of control variates when a con-
stant main part does not help, here a constant value can also reduce
the variance.

4. Applications

To demonstrate the application of the proposed model, we ren-
der procedurally generated participating media defined by twelve-
octave Perlin-noise [EMP∗03] and by an analytic function. The
albedo is 0.9 and 0.7 in the Perlin-noise model and in the ana-
lytic model, respectively, and they scatter according to the Rayleigh
phase function. The analytic medium is enclosed in a sphere of ra-
dius 10 and center (0,0,10), and its extinction at point (x,y,z) in-
side the sphere is

σt(x,y,z) =
(

cos(3(x+ y+ z)/2)+1
2

)5

· sin(z/2)+2
3

, (21)

while it is zero elsewhere.
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Figure 5: The anatomy of the ray going through the center of the
Perlin-noise (top) and analytic medium (bottom) used in the exper-
iments. We show one set of explorer points and random interac-
tion points that together define one random sample of the complete
transmittance function. Explorer points show where the approxi-
mate extinction is evaluated to obtain the control variate. Interac-
tion points are generated when jumping on the ray with free flight
distances to estimate the transmittance of the difference extinction.
Sampling extinction σsamp is 0.4 for this ray in the analytic medium.

Figure 5 depicts the extinction and the transmittance along a ray
of axis z that goes through the center of the medium. The main part
is an approximation of the extinction coefficient, which should be
easy to integrate. We select explorer points along the ray where ap-
proximate extinction values are available, and the main part is ob-
tained by fitting an analytically integrable function. In the demon-
strations we apply a piece-wise linear interpolation. For example,
if the medium is a many-octave Perlin noise, only the first few oc-
taves could be evaluated at the explorer points, and these data can
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even be borrowed from nearby rays. Note that primary rays belong-
ing to a pixel or neighboring pixels cross approximately the same
part of the volume, so do shadow rays belonging to a point source.
Thus, when a new ray is traced, the points where the extinction has
been evaluated in the already processed neighboring rays can be
projected to the current ray. The projection involves the substitu-
tion of the ray parameter of the borrowed ray into the ray equation
of the current ray. By reusing information, the cost of main part
definition becomes negligible.

The transmittance along the ray is estimated as the product of the
main part transmittance and the weight of a particle transmitted to
the current distance. The particle jumps from interaction point to
interaction point increasing the distance randomly with the sampled
free flight. The free flight distance is obtained by solving Equa-
tion 4 using sample density σsamp mimicking |σdiff|.

4.1. Particle tracing

The discussed on-the-fly random medium manipulation can be exe-
cuted during particle tracing, where particles can be either photons
emitted by light sources or importons emitted by the camera. To
avoid the exponential growth of tracked light particles, we use the
Single Particle Model, which randomly keeps either the transmitted
or the scattered particle, but not both.

The rules of the Single Particle Model are given by Equation 9.
When the next interaction point is to be sampled, we set a desired
density function σsamp(~p) and solve Equation 4 to find the interac-
tion point along the ray. Based on the real extinction and the sam-
pling density, the interaction rules are applied, and the process is
repeated. The sampling extinction can be a piece-wise constant or
piece-wise linear function. The sampling extinction can evolve dur-
ing rendering, i.e. it can be tuned based on the extinction values of
already visited points. The simplest choice is a constant value.

The following algorithm simulates a light particle of properties
like position ~pstart, direction ~ω, and energy or importance E until
the particle leaves the volume of interest or gets absorbed:

SimulateParticle(~pstart,~ω,E)
while (~pstart is inside the volume AND |E| > 0)

// free flight sampling with σsamp
Solve {− log(1−rand()) =

∫ s
0 σsamp(~p(τ))dτ} for s;

~p = ~pstart +~ωs; // point of interaction
r = σt(~p)/σsamp(~p); // fetch real extinction
a = Albedo(~p);
qscat = ar; qtran = |1− r|; // terminating version
qsum = qscat +qtran;
if (r < 1 or qsum > 1) // adaptive

qscat = qscat/qsum; qtran = qtran/qsum; // non-terminating
ξ = rand();
if (ξ < qscat) // scatter to new direction

E = arE/qscat;
~ω = SamplePhaseFunction(~ω);

else if (ξ < qscat +qtran) E = (1− r)E/qtran; // transmission
else E = 0; // absorption
~pstart = ~p;

endwhile
end

This program uses the functions σt(~p) returning the real
extinction at point ~p, Albedo(~p) providing the albedo,
SamplePhaseFunction(~ω) that randomly samples a new di-
rection with the phase function of the real material, and rand()
that generates a uniformly distributed random number in [0,1).
For the sake of simplicity, the pseudo-code assumes that the
phase function can be exactly sampled, so the directional pdf
cancels it. As no control variate is applied now, r is assumed to
be non-negative. The reason of using no control variate is that
in particle tracing scattered rays can be very incoherent, thus the
cost of main part definition cannot be so simply amortized as in
the case of primary rays. According to the variance analysis, the
non-terminating version is better for majorants and the terminating
version for minorants. Therefore, the above implementation uses
an adaptive version that dynamically chooses from the terminating
and non-terminating versions at each interaction.

Figure 6 shows the multiple scattering rendering of the medium
defined by Equation 21. The medium is illuminated by high dy-
namic range environment lighting. The rows compare the adaptive
SimulateParticle algorithm with a non-terminating and a terminat-
ing version. The adaptive version is never worse than the two origi-
nal versions. As the variance analysis indicates, the variance cannot
be further decreased by increasing the sampling extinction beyond
the maximum extinction, which is 1 in this medium. On the other
hand, the sampling cost expressed by the number of data fetches is
inversely proportional to the sampling extinction. To take both the
cost and the benefit into account, we use a Figure of Merit (FoM)
measure defined as the reciprocal of the product of the Mean Square
Error and the number of medium parameter evaluations per pixel.
Figure 7 shows the multi-octave Perlin-noise medium.

4.2. Transmittance estimation

If scattering is ignored, the integral of Equation 1 disappears and
only the transmittance should be evaluated that attenuates the
environment illumination. During transmittance calculation both
absorption and out-scattering are just loss in radiance, and out-
scattered light particles are not tracked. Thus, it is worth applying
the Double Particle Model defined by Equation 8, since it has lower
variance and its extra cost of particle splitting does not show up in
this application. We also use a control variate since primary rays
are coherent, thus main part definition has negligible added cost.

If the main part is appropriately selected, the absolute value of
the difference extinction is significantly smaller than the original
extinction, which has two important advantages. On the one hand,
the variance can be significantly reduced. On the other hand, the
expected length of the random steps is the reciprocal of the sam-
pling density mimicking |σdiff(~p)|, thus the medium is explored
more quickly by taking larger steps.

The transmittance is estimated as the product of the main part
transmittance and the importance of a particle transmitted to the
end of the considered interval. The particle jumps to interaction
points that are generated with incrementally solving the sampling
equation for given σsamp(~p(s)) mimicking the absolute difference
extinction until the medium is left. The following algorithm com-
putes an unbiased estimate of the transmittance in interval [0,S]:
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Figure 6: Particle tracing of the medium of Equation 21 with 100 rays per pixel setting the σsamp value differently to demonstrate the effect
of the sampling density on the number of volume fetches, i.e. the rendering cost, and on the rendering error. Increasing σsamp reduces the
variance until σsamp < σt ≤ σmax = 1 on the ray as suggested by the variance analysis of the Single Particle Model in Section 3.4. However,
the number of fetches becomes proportional to σsamp, thus the sampling cost increases. The FoM efficiency metric is defined as the reciprocal
of the product of the mean square error and the cost. Note that we do not require the sampling density to be a majorant, but its appropriate
choice is still important as it affects the error-cost trade-off. In this case, the optimum value is σsamp ≈ 0.8, which is below the maximum
extinction, depending on the actual extinction values a given ray can see and also on the variation of the extinction and illumination inside
a pixel. If the sampling extinction is too low, the variance grows rapidly, so the estimator becomes poorer.

σsamp = 0.4 σsamp = 0.5 σsamp = 0.8 σsamp = 1 σsamp = 2

Error: 81 Error: 51 Error: 58 Error: 65 Error: 90

Figure 7: Particle tracing of a twelve-octave Perlin noise with equal number of medium parameter evaluations, i.e. equal cost, setting
sampling density σsamp value differently. The extinction is evaluated 500 times per pixel in each method. The optimal σsamp value is slightly
below the extinction of the larger dense regions. In this medium, the maximum of the extinction is 1, but most of the rays meet extinctions less
than 0.6.
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Transmittance(~pstart,~ω,S)
E = exp(−

∫ S
0 σmain(~p(τ))dτ); // main part

s = 0;
while (|E| > 0)

Solve {− log(1−rand()) =
∫

∆s
0 σsamp(~p(τ))dτ} for ∆s;

~p = ~pstart +~ω∆s; // point of interaction
s = s+∆s;
if (s≥ S) break ;
E = E(1−σdiff(~p)/σsamp(~p));
~pstart = ~p;

endwhile
return E;

end

Note that this algorithm is identical to the residual ratio track-
ing [NSJ14] although we have not assumed that σsamp(~p) is con-
stant and is a majorant to the absolute value of the difference ex-
tinction. Due to the intuitive interpretations of negative energy and
negative extinction, we have shown that these hard to meet require-
ments can be sidestepped. The result of the simulation is still un-
biased, with occasionally negative estimates (Figure 8). Such neg-
ative estimates are clipped to zero only for visualization, which is
not much different from clipping or tone-mapping values outside
the dynamic range of our screen.
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Figure 8: Sample transmittance functions on the ray going through
the center of the analytic medium, the real transmittance, and prob-
abilistic lower and upper bounds using the standard deviation that
is the square root of the variance obtained with Equation 16. The
real extinction and its main part are shown by the lower image of
Figure 5, and the sampling extinction is σsamp = 0.4.

In addition to the proposed transmittance estimation algorithm,
we also generated images with ray marching and Woodcock track-
ing setting the sampling density to 1, which is the tightest constant
majorant of the extinction and therefore the most optimal choice for
Woodcock tracking (Figures 9 and 10). Ray marching worked with
a single ray per pixel taking steps of length 0.9, and we set the num-
ber of rays per pixel for Woodcock tracking and the new algorithm
to make the different methods evaluate the extinction function the
same number of times. The new method provides the lowest error
and a visually pleasing artifact free image.

Ray marching Woodcock tracking New method

1 ray, Err: 67 3 rays, Err: 367 2 rays, Err: 54

Figure 9: Equal number of medium parameter evaluations com-
parison of the proposed transmittance estimation to classical sin-
gle ray per pixel ray marching and multi ray per pixel Woodcock
tracking. Each method took 10 samples from the medium density
per pixel on average.

Woodcock tracking New method

Figure 10: Comparison of the proposed transmittance estimation
to Woodcock tracking. Each method took 20 samples from the
medium density per pixel on average.

4.3. Single scattering of point source lighting

Let us consider a practically important special case, the computa-
tion of single scattering of the light of a point source located at
~l (Figure 11). As area lights can be approximated by many point
sources, and multiple scattering can be simulated by introducing
Virtual Point Lights [ENSD12], this basic operation can be ex-
tended to a complete global illumination renderer. If we take the
adjoint approach and implement path tracing, variable E will be
the visual importance, i.e. the weight of the gathered contribution.

p(s)
D

l

s
s

ω'

ωe

l

Figure 11: Single scattering of point source lighting.

In this special case, the radiance gathered by ray ~p(s) =~e−~ωs
of start~e, direction ~ω, and length S is

L(~e,~ω) = T~e,~ω(S)L(~p(S),~ω)+

∫ S

0
T~e,~ω(s)σt(~p(s))a(~p(s))ρ(~ω ·~ω′(s))Lin(~p(s),~ω′(s))ds (22)
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where ~ω′(s) is the direction from light source~l to point ~p(s). The
incident radiance Lin due to a point source of power Φ is

Lin(s) =
Φ

4π(D2 +(s− s~l)
2)

T~p(s),~ω′(s)(|~l−~p(s)|)

where D is the distance between the ray and the light source, and s~l
is the ray parameter where the ray is the closest to the point source.

To compute the Monte Carlo quadrature of the integral of Equa-
tion 22, we need to estimate transmittance T~e,~ω(S) and find sample
points ~p(s) at which the scattered radiance is evaluated and mul-
tiplied by the estimate of transmittance T~e,~ω(s). The key observa-
tion is that Algorithm Transmittance used to find T~e,~ω(S) gener-
ates data at interaction points from which a low variance estima-
tor of the transmittance can be computed at an arbitrary point of
the ray. This estimate is not constant between interaction points,
but thanks to the control variate it follows an exponential fall off
[JNT∗11, NNDJ12]. This observation opens the possibility of us-
ing arbitrary techniques for sampling scattering points and employ-
ing the continuous transmittance function to obtain unbiased low-
variance estimates.

One option, called the attenuation-driven sampling, is to directly
use the interaction points also for the locations where shadow rays
are cast and scattering of the light from the point source is eval-
uated. The density of interaction points is σsamp(~p(s)) (see Sup-
plementary Material for the proof). The sampling density of inter-
action points mimics none of the factors in the integral of Equa-
tion 22, thus it provides poor importance sampling and its only ad-
vantage is that sample points generated for the transmittance are
reused for scattering. The importance sampling aspect can be im-
proved by the concept of Sampling Importance Re-sampling (SIR)
[TCE05]. This rejection sampling scheme increases the variance
but saves the expensive shadow ray computation of those interac-
tion points that would have negligible scattered radiance.

Scattering points can be sampled independently of the interac-
tion points, for example, with the Cauchy distribution to mimic
the weak singularity of 1/(D2 + (s− s~l)

2) in the scattered radi-
ance [KF12]. We call this source-driven sampling. Alternatively,
scattering points can be sampled mimicking T~e,~ω(s)σt(~p(s)) but
using the piece-wise linear approximation of the extinction to al-
low analytic solution of the sampling equation, which is called
scattering-driven sampling. Different approaches can even be com-
bined according to Multiple Importance Sampling (MIS).

The discussed sampling methods have been implemented in a
single scattering type ray tracer and we visualized the medium
defined by Equation 21 illuminated by environment lighting and
also by placing a point source inside the medium. The main part is
built from information stored in explorer points, which is shared by
nearby pixels. The main part of the extinction function is computed
by fitting a piece-wise linear function on the explorer points. The
sampling density mimicking |σdiff(~p(s))| can be set to a constant if
the main part absorbs most of the variations. The optimal choice is
close to the maximum absolute value of the difference extinction,
thus we set it to the maximum obtained during casting the last few
neighboring rays.

In case of attenuation-driven sampling, shadow rays are traced

from the interaction points. Source-driven sampling obtains scat-
tering points from the Cauchy distribution mimicking 1/(D2+(s−
s~l)

2), and trace shadow rays from these points. Scattering-driven
sampling mimics both the free flight until and the albedo at the
scattering point. Source-driven and Scattering-driven samples can
be generated before sampling the transmittance, and these samples
can also be used as explorer points. For shadow rays only the trans-
mittance is calculated.

Rendering results are shown in Figure 12. Different methods
fetch the procedural density by the same number of times, which
leads to different numbers of rays depending on how many samples
per primary ray are needed by a particular method. We can observe
that ray marching rendering is noise free but is biased. Woodcock
tracking has high variance. The methods incorporating the pro-
posed transmittance estimation are significantly better. If the point
source is strong compared to environment lighting, then the combi-
nation of source-driven and scattering-driven approaches with MIS
is the winner. This option has also been implemented in a produc-
tion renderer, which was used to compute the image of Figure 13.

Figure 13: Image produced by a production renderer where we in-
tegrated the proposed method using the combination of the source-
driven and the scattering-driven sampling with MIS.

5. Conclusions

This paper presented a participating media manipulation method
that simplifies free flight sampling and transmittance estimation
in heterogeneous media while guaranteeing that the original ex-
pected radiance values are preserved. The method does not require
the knowledge of a majorant extinction coefficient, which extends
its applicability to procedural models as well. We have analyzed
the variance of the method and have proven that approximate ex-
tinction values and especially the control variate can significantly
increase the accuracy. Such information can be obtained on-the-fly
from rays belonging to the same pixel or going nearby with neg-
ligible additional computational cost. Thus, with making the algo-
rithm a little more involved, the variance of the estimators can be
decreased.
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Ray marching Woodcock Att-driven Att-driven SIR Source-driven Scatter-driven MIS

1 ray, Err: 104 45 rays, Err: 128 10 rays, Err: 114 30 rays, Err: 72 6 rays, Err: 54 6 rays, Err: 52 6 rays, Err: 42

1 ray, Err: 157 8 rays, Err: 303 2 rays, Err: 250 5 rays, Err: 143 1 ray, Err: 115 1 ray, Err: 102 1 ray, Err: 93

Figure 12: Equal number of medium parameter evaluations comparison of the proposed single scattering methods to classical single ray
per pixel, constant step ray marching and multi-ray per pixel Woodcock tracking. Each method took approximately 300 samples (upper row)
and 50 samples (lower row) from the medium per pixel on average to compute all primary and shadow rays. For each method, we show the
number of primary rays requiring the same number of medium fetches, and the RMS errors.
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