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Fig. 1. Equal-time comparison of bidirectional path tracing (BPT) with different MIS heuristics. The balance (b) and power (c) heuristics perform visibly worse

than using only the unidirectional path tracing samples that BPT includes (b). The error reduction in parentheses is w.r.t. the balance heuristic combination;

lower is better. Our variance-aware balance heuristic significantly improves the result (e), especially the direct illumination component (bottom row).

Many existing Monte Carlo methods rely on multiple importance sam-

pling (MIS) to achieve robustness and versatility. Typically, the balance

or power heuristics are used, mostly thanks to the seemingly strong guaran-

tees on their variance. We show that these MIS heuristics are oblivious to

the effect of certain variance reduction techniques like stratification. This

shortcoming is particularly pronounced when unstratified and stratified

techniques are combined (e.g., in a bidirectional path tracer). We propose to

enhance the balance heuristic by injecting variance estimates of individual

techniques, to reduce the variance of the combined estimator in such cases.

Our method is simple to implement and introduces little overhead.
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1 INTRODUCTION

Monte Carlo (MC) methods have become an indispensable tool in

realistic rendering [Keller et al. 2015]. The performance of an MC

estimator largely depends on its variance, which manifests itself
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as noise in the rendered image. One crucial tool for reducing this

variance is multiple importance sampling (MIS). MIS is used to

achieve robustness, such as in bidirectional path tracing [Veach and

Guibas 1995a; Lafortune andWillems 1993] or vertex connection and

merging [Georgiev et al. 2012a; Hachisuka et al. 2012], by combining

multiple sampling techniques in the hope that at least one performs

well in every scenario.

A key goal of MIS is that the combined algorithm is never (signif-

icantly) worse than any one of the sampling techniques alone. As

shown in Fig. 1, this goal is not always achieved for bidirectional

path tracing: The unidirectional path tracing samples alone (b) per-

form visibly better for the direct illumination component (bottom

row) than the full bidirectional algorithm (c-d). As we discuss later,

this effect is due to the combination of the light tracing samples,

which are not stratified over the image plane, with the stratified

camera samples. We show that the existing MIS heuristics cannot

account for the variance reduction due to stratification and produce

suboptimal weighting as a result.

The most commonly used MIS weighting heuristics are the bal-

ance heuristic and its variants [Veach and Guibas 1995b]. These

heuristics are based solely on the effective densities of the sam-

pling techniques, i.e., the product of sample count and sampling

probability density. The effective density, however, does not always

adequately represent the variance. Previous work has pointed out

that low variance does not always manifest as high density, causing

the existing MIS heuristics to perform poorly for defensive sampling

applications [Owen and Zhou 2000; Georgiev et al. 2012b; Konda-

paneni et al. 2019]. We point out that common variance reduction

methods like sample (or image plane) stratification, Russian roulette,

or splitting are also poorly handled by existing heuristics. These

approaches modify either the number of samples or the probability
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density, or both in opposing ways. Hence, considering only the

product of the two, i.e., the effective density, can be insufficient.

To this end, we propose to integrate variance estimates into the

MIS weights. We derive a factor that accounts for the mismatch

between the portion of variance that is considered by the balance

heuristic and the actual variance. This factor is then used to increase

the balance heuristic weight whenever the variance is smaller than

the portion considered by the balance heuristic. We show that the

proposed heuristic can be easily integrated even in complex algo-

rithms, such as bidirectional path tracing, at a negligible cost. In the

example shown in Fig. 1, this heuristic (e) offsets the negative effects

of the balance and power heuristics (c,d) and yields variance on par

with the – here almost optimal – unidirectional path tracing (b).

2 PREVIOUS WORK

Path tracing. A simple application of MC integration to light

transport simulation is path tracing [Kajiya 1986]: tracing random

light paths from the camera through the scene until they hit a light

source. A path tracer is naturally stratified on the image plane as it

renders each pixel individually. Its performance can be improved

by next-event estimation, explicitly connecting the vertices along

paths to the light sources. Next-event estimation and randomly

intersecting lights via BSDF sampling are two examples of sampling

techniques that can be combined via MIS.

Multiple importance sampling. MIS [Veach and Guibas 1995b] con-

structs an unbiased MC estimator by combining several sampling

techniques. Samples from each technique are weighted based on

their densities. The balance, power, cutoff, and maximum heuris-

tics are provably good weighting functions: For all four of them,

the variance of the combined estimator is always within certain

bounds of the variance of the (unknown) optimal MIS combina-

tion. Recent work has revisited these bounds, pointing out that

negative MIS weights (i.e., affine combinations rather than convex

ones) can produce even lower variance [Kondapaneni et al. 2019].

In some applications, the original heuristics proposed by Veach and

Guibas have been found to perform poorly [Georgiev et al. 2012b;

Popov et al. 2015]. Specialized solutions have been proposed for

these specific applications. We propose a more general approach

that accounts for the mismatch between the portion of the variance

that is minimized by existing heuristics and the entire variance.

Robustness in bidirectional sampling. In light transport, MIS is

a crucial component of robust algorithms. Bidirectional path trac-

ing [Veach and Guibas 1995a], for example, uses MIS to combine

paths starting from the camera with paths traced from the lights in

various ways. The efficient combination of multiple path sampling

techniques is the key to the robustness of this algorithm under di-

verse scene and lighting configurations. It can also be combined

with photon mapping [Georgiev et al. 2012a; Hachisuka et al. 2012]

and further extended to participating media [Křivánek et al. 2014],

again relying on MIS.

We show that the existing MIS weighting heuristics, specifically

the power heuristic, yield sub-optimal results in such bidirectional

methods. This is due to the combination of the unstratified light

tracer with other techniques that are stratified over the image plane.

The impact of variance reduction schemes like stratification has been

discussed in the literature [Veach 1997; Hammersley andHandscomb

1968]. To the best of our knowledge, we are the first to point out that

stratification is poorly handled by existing MIS heuristics. Our novel

variance-aware heuristic reduces variance of MIS combinations that

include stratified techniques.

Efficiency. Robustness does not necessarily imply overall effi-

ciency. Combining many sampling techniques might be robust with

respect to handling complex edge cases, but significant overhead is

usually incurred by producing samples from techniques that are in-

effective in a given situation. Several approaches adapt the number

of samples taken from each technique, e.g., based on a variance anal-

ysis [Sbert et al. 2016, 2018; He and Owen 2014]. Other approaches

alter the sampling densities based on the MIS weights of previously

taken samples [Šik et al. 2016; Grittmann et al. 2018; Hachisuka

et al. 2014]. For the latter applications to work well, it is particularly

important that the MIS weights are close to optimal.

Defensive sampling. In cases where an almost optimal importance

sampling pdf is available, a “defensive” (typically uniform) distri-

bution can be mixed in via MIS [Owen and Zhou 2000; Hesterberg

1995] to prevent the potential extreme (or even unbounded) variance

in regions where that pdf has low values [Vorba et al. 2014; Herholz

et al. 2016]. Our method achieves significant improvements over the

existing MIS heuristics for such defensive sampling combinations.

Optimal constant weights. In the MIS framework, the weights

are functions of the samples. When they are constrained to be con-

stant, i.e., not allowed to vary with the sample location, the MIS

estimator simplifies to the well-known case of linear combination

of estimators. In this case, the optimal (constant) weights are in-

versely proportional to the estimators’ variances [Hammersley and

Handscomb 1968; Rousselle et al. 2016; Sbert and Havran 2017]. In

MIS, such constant weighting is typically – but not always – worse

than using the heuristics of Veach [1997]. We strive to combine the

best traits of the two approaches: the variance-awareness of the

optimal constant weights with the flexibility of the MIS weighting

heuristics. Our resulting weights outperform both approaches.

Optimal MIS weights. The concurrent work of Kondapaneni et al.

[2019] derives the optimal (non-constant) weights in the MIS frame-

work, showing that MIS can be further improved by allowing the

weights to be negative. They compute these weights by solving a

linear system with coefficients given by integrals, each as complex

as the original integration problem. Their method would become

complex and costly in advanced algorithms featuring numerous

sampling techniques, such as bidirectional path tracing and derived

methods, where it has not yet been applied. While our method is

not optimal, its simplicity can be appealing for complex use cases.

3 BACKGROUND

Monte Carlo integration. The integral of a function f (x) over a
domain Ω can be estimated via Monte Carlo integration:

µ =

∫
Ω
f (x) dx ≈

n∑
i=1

f (Xi )

np(Xi )
, (1)
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where Xi are independent random samples drawn according to

some probability density function (pdf) p(x). The quantity np(x) is
referred to as the effective density. An estimator with a single sample

is called a primary estimator. Averaging over multiple samples from

the same density, as in (1), forms a secondary estimator.

Multiple importance sampling. MIS combines several sampling

techniques linearly as follows [Veach and Guibas 1995b]:∫
Ω
f (x) dx ≈

∑
t ∈T

nt∑
i=1

wt (Xt,i )
f (Xt,i )

ntpt (Xt,i )
. (2)

Here, T denotes the set of sampling techniques, each drawing nt
samples, and Xt,i is the ith sample from technique t . The variance
of an MIS estimator, σ 2

MIS
, has the following form [Veach 1997]:

σ 2

MIS
=

∑
t ∈T

∫
Ω
w2

t (x)
f 2(x)

ntpt (x)
dx −

∑
t ∈T

1

nt

(∫
Ω
wt (x)f (x) dx

)
2

. (3)

Balance and power heuristics. A common choice for the weighting

functionwt (x) is the power heuristic [Veach and Guibas 1995b]:

wt,power(x) =
(ntpt (x))

β∑
k ∈T (nkpk (x))

β
. (4)

The balance heuristic, obtained when β = 1, does not minimize the
entire variance functional (3). Instead, it only minimizes the sum of

weighted second moments (the first term in equation (3)):

wt,balance = argmin

wt

∑
t ∈T

∫
Ω
w2

t (x)
f 2(x)

ntpt (x)
dx . (5)

The power heuristic with exponent β = 2 is often used for low-

variance combinations, where the variance can be much smaller

than the term minimized by the balance heuristic. The power heuris-

tic, however, only amplifies the weighting of the balance heuristic,

which sometimes reduces and sometimes increases the variance.

We propose a heuristic that accounts for the portion of the variance

that is ignored by the balance heuristic.

4 VARIANCE-AWARE MIS WEIGHTS

In this section, we introduce our novel MIS heuristic, analyze its

variance, and discuss it on simple one-dimensional examples.

4.1 Motivation

Consider the unweighted contribution of a technique t to the vari-

ance (3) of an MIS combination:

σ 2

t =

∫
Ω

f 2(x)

ntpt (x)
dx

µ2,t

−
µ2

nt
rt

. (6)

For the sake of conciseness, we refer to µ2,t as the second moment

of t , when, in fact, it is the second moment of the primary estima-

tor, divided by the number of samples nt used by the secondary
estimator.

The balance heuristic minimizes the sum of the weighted µ2,t of
all techniques (5), ignoring the residual terms rt . Now, consider two
cases: one where all techniques have high variance, and one where

some technique t has low variance.

High variance. If all techniques have high variance, the balance

heuristic is close to optimal. For the variance, σ 2

t , to be high, µ2,t
needs to be much larger than the residual term rt . The portion of

the combined variance neglected by the balance heuristic is thus

relatively small. In other words, the closer the ratio µ2,t /σ
2

t is to

one, for all techniques, the closer the balance heuristic is to being

optimal. In the extreme, if for all t we have µ2,t /σ
2

t = 1 ⇔ µ2,t = σ 2

t ,

then the balance heuristic minimizes the variance of the combined

estimator, i.e., it is optimal.

Low variance. If, however, some technique t has low variance,

the balance heuristic will perform poorly. In this case, rt will be
large relative to µ2,t . The larger the ratio µ2,t /σ

2

t is, for some t , the
further away the balance heuristic will be from the optimal weights.

In the extreme case, if the variance of technique t is zero, the optimal

MIS weight would be wt (x) = 1. The balance heuristic, however,

considers an infinitely larger quantity µ2,t and cannot achieve this

optimal weighting.

4.2 Variance-aware balance heuristic

Above we observed that the following variance factor indicates how
close the balance heuristic is to being optimal:

vt =
µ2,t

σ 2

t
. (7)

Ifvt is close to one for all techniques, the balance heuristic is almost

optimal. A largevt indicates that the variance of technique t is much

lower than the term considered by the balance heuristic, therefore

the balance heuristic weight for t should be increased.

As noted in Section 2, weighting based solely on (estimated)

variances is also possible. Such constant weights, however, can

perform even worse than the balance heuristic [Veach 1997]. We

will use the ratio (7) to combine the best of both approaches.

We propose to adjust the balance heuristic weights based on this

variance factor, yielding our variance-aware balance heuristic:

wt,our(x) =
vtntpt (x)∑
k vknkpk (x)

. (8)

The three key advantages of this approach are:

(1) the weight of techniques with low variance is increased,

(2) the weighting functions are close to the provably good bal-

ance heuristic when all techniques have high variance, and

(3) they yield the optimal constant weight when combining tech-

niques with equal effective densities, but different variance.

We will now discuss and justify each of these points individually.

(1) Low-variance combinations. The variance factor vt contains
the technique’s variance in the denominator, thus the weight is

increased when the variance is low. In the limit,

lim

σ 2

t→0

vt = ∞. (9)

Our variance-aware weights thus handle low-variance problems in

a manner that is more likely to achieve an improvement than, e.g.,

the power heuristic, especially when a low-variance technique also

has a low effective density, as we will discuss in the next sections.
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Fig. 2. Two integration problems, each combining samples from two techniques (orange and blue): defensive sampling (top row) and stratification (bottom

row). Columns (b-f) compare different MIS weighting heuristics. The power heuristic can amplify the sub-optimal weighting of the balance heuristic, and

variance-based weighting (i.e., using optimal constant weights) can be too coarse. Our heuristic is closest to the optimal weights (f).

(2) High-variance combinations. Since the second moment is no

smaller than the variance, vt is always greater than or equal to one.

Due to the division by the variance, vt falls off rapidly towards one

with increasing variance. That is,

µ2,t ≥ σ 2

t ⇒ vt ≥ 1 and lim

σ 2

t→∞
vt = 1. (10)

This property effectively maintains the error guarantees of the bal-

ance heuristic in high-variance cases. It also implies that variance

estimates do not have to be computed for techniques that are ex-

pected to have a high variance: vt can be approximated by one.

(3) Optimality with equal effective densities. The property making

our method particularly well suited to combinations of stratified

and unstratified techniques (as in bidirectional path tracing) is that

it produces the optimal constant weight when the effective densities

of all techniques are (almost) the same. With ntpt (x) ≈ nkpk (x) for
all pairs of techniques t and k , the weights simplify to

wt (x) ≈
vt∑
k vk

=

(∑
k

vk
vt

)−1
=

(∑
k

σ 2

t

σ 2

k

)−1
, (11)

where the last equality holds because equal effective densities imply

equal second moments.

4.3 Discussion in 1D

Wenow empirically validate our heuristic on simple one-dimensional

examples, modeled after the practical settings discussed in Section 6.

The source code can be found in the supplemental material.

Figure 2 shows results from two integration problems, one per

row. Column (a) shows the problem setup, i.e., the integrand and the

sampling densities of two techniques. Columns (b-f) then compare

the MIS weights of different heuristics, and column (g) compares

their variance.

Defensive sampling. In the first row, the blue density almost

matches the integrand, but its low tail induces excessive variance. To

ameliorate this, this ‘almost-proportional’ distribution is combined

with a defensive, uniform one. One sample is taken from each.

While the balance and power heuristics do not perform well, they

produce lower error than solely variance-based weighting (i.e., the

optimal constant weights). Our method combines the strengths of

both methods, getting close to the optimal weights derived by Kon-

dapaneni et al. [2019], at lower cost and implementation complexity.

Stratified sampling. The second row combines an unstratified

estimator, taking n samples from a uniform density, with a stratified

estimator, taking one sample fromn uniform densities. Here, the blue

line (a) consists ofn densities normalized within their corresponding

strata. The overall number of samples is the same for both estimators,

as are their effective densities, hence Veach’s heuristics yield equal

weights. Here, our weights are identical to the optimal constant

ones.

The optimal weights of Kondapaneni et al. are particularly ex-

pensive in this case. The simpler heuristics can treat the stratified

variant as one technique, despite it consisting of multiple densities,

each non-zero only over the corresponding stratum. The optimal

weights can only be obtained by treating these per-stratum densities

as separate sampling techniques. Therefore, the cost of computing

the optimal weights increases quadratically with the number of

techniques and the number of strata, while our method is linear in

the number of techniques and independent of the number of strata.

In a bidirectional path tracer, the stratified path tracing samples

and the unstratified light tracing samples can have similar effective

densities. The two examples in Fig. 3 show that in such a setup,

the balance heuristic can perform worse than simply averaging all

samples from all techniques. The first row shows the same setup as

the second one in Fig. 2. Here, the balance heuristic is equivalent

to simply averaging all samples. In the second row, the effective
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Fig. 3. Two integration problems where a stratified and an unstratified esti-

mator are combined. Column (a) plots the integrand and sampling densities.

The unstratified estimator takes n samples from the orange density, while

the stratified estimator takes one sample within each of n strata (dashed

lines), using the per-stratum normalized densities plotted in blue. Column (b)

shows that the effective densities, and hence the balance heuristic weights,

are almost identical in both cases. The variance comparison (c), however,

reveals that not only is the balance heuristic combination worse than the

stratified samples alone, it can also be worse than assigning equal weight

to both techniques (‘sample average’).

densities are slightly different. Despite the unstratified technique

having a much higher variance, the balance heuristic assigns a

higher weight to it than to the stratified technique, in some regions.

The result is worse than simply averaging all samples. In both cases

shown in Fig. 3, our new variance-aware weighting heuristic retains

the lower variance of the stratified technique. By being close to

the optimal constant weights, the variance with our method is, by

definition, always better than simply averaging the samples from

all techniques.

5 IMPLEMENTATION

To show its suitability to light transport problems, we have imple-

mented our proposed weighting heuristic in two MIS applications:

bidirectional path tracing, which combines techniques with and

without image plane stratification, and a defensive sampling ap-

plication for direct illumination. Both have been implemented in

PBRT [Pharr et al. 2016], sharing the code for estimating and utiliz-

ing the variance factors vt introduced in the previous section. The

source code can be found in the supplemental material.

Procedure. Our method is easily implemented on top of progres-

sive rendering algorithms. To utilize variance estimates, rendering

is split into two main stages. In the first stage, we estimate the image

with a few samples per pixel (spp), using the standard balance or

power heuristics in all MIS calculations; our implementation takes

1 spp. Based on these samples, we estimate the variance of each

unweighted technique and compute vt . In the second stage, any

further rendering iterations use our variance-aware heuristic. By

estimating the vt factors in the first stage, and only using them in

the second stage, we ensure that the result is unbiased [Kirk and

Arvo 1991].

Handling initial samples. Samples from the first stage are not

wasted. There are three options to proceed with the rendering result

of the first stage: Simply average with the second stage (noisy if the

balance heuristic performs poorly), average but weigh based on the

vt factors (biased [Kirk and Arvo 1991]), or keep only those pixels

where no technique has a variance factor above a certain threshold.

We chose the last approach, with a threshold of maxt vt < 2.

Estimatingvt . Theoretically, we would like to compute avt factor
per technique in every pixel. To allow our method to work with a

small number of samples, even just one per pixel, we instead divide

the image into equal-sized tiles (8 × 8 in our tests). For each tile, we

compute the sample variance and sample mean of each technique.

The result are per-tile vt factors that are used for all pixels within

the tile. This approach is simpler and cheaper than approximatingvt
for every pixel. Its downside is that the sample variance increases if

the tile contains a discontinuity, effectively reverting to the balance

heuristic for such tiles.

6 RESULTS AND DISCUSSION

In this section we evaluate the performance of our method in two

rendering applications: bidirectional path tracing and defensive

sampling for light source selection. The full-size images of all results

can be found in the supplemental material, along with the source

code and scripts to reproduce them. The tests were performed on a

workstation with an Intel i7-4790 processor and 32GB of RAM.

We compare our method to the optimal MIS weights of Kondapa-

neni et al. [2019] only for the simpler defensive sampling applica-

tion. Incorporating these weights into a bidirectional path tracer is

a non-trivial task. Aside from the cost of maintaining multiple large

matrices for every pixel, the optimal weights also have to consider

paths with zero contribution, which requires major incisions into

the light transport and material logic. We therefore do not attempt

to compare their method to ours on the full bidirectional path tracer.

Such a comparison would be interesting to assess the margin for

further improvements but it is beyond the scope of this work.

To compare results numerically, we use the mean relative squared

error (MRSE) metric. The MRSE of an image is computed by dividing

the squared error of each pixel by the reference pixel value, then

taking the average of the result among all pixels. This avoids error

values being dominated by bright pixels, which the commonly used

root mean squared error metric (RMSE) is susceptible to.

6.1 Bidirectional path tracing

Most techniques in bidirectional path tracing are stratified over the

image plane, with one exception – light tracing, which connects

light paths to the camera via shadow rays. Not being restricted to

sampling within a given pixel is the very reason why light tracing

is efficient at rendering caustics, focused indirect illumination, and

even some types of direct illumination (e.g., lights close to surfaces,

inside volumes, or with peaked emission profiles). As we observed

before, however, the classical MIS heuristics cannot capture the

variance reduction due to stratification in the other techniques, in

ACM Trans. Graph., Vol. 38, No. 6, Article 152. Publication date: November 2019.
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Fig. 4. Equal-time (and equal-sample) comparisons of BPT using three

different MIS heuristics. Our heuristic improves low-variance cases while,

in contrast to the power heuristic, never being significantly worse than the

balance heuristic overall.

this case over the image plane. Figure 1 shows how this can result in

excessive noise due to the unstratified light tracer in image regions

where the variance of the stratified techniques is low.

Figure 4 compares our heuristic to the balance and power heuris-

tics on three scenes. We show results for full global illumination and

for direct illumination alone. The numbers under each row provide

the MRSE and the ratio of that error to the balance-heuristic error

(in parentheses), across both the entire image and the corresponding

zoom-in. Note that the comparisons are not only equal-time but

also equal-sample, since our method does not introduce measur-

able computational overhead. The ‘path tracing’ images have been

produced from the subset of next-event estimation samples in BPT

(without the need to apply MIS). Therefore, ideally, the noise in the

full MIS combinations should never be higher than those samples

alone.

The first row in Fig. 4 shows an extreme case: The error with the

balance heuristic is four times larger than the path-tracing samples

alone. TheMIS-weight comparison in Fig. 5 shows the reason for this

behavior: The figure compares the variance of the three techniques

(a) for direct illumination (BSDF samples, next-event estimation,

PT
:N

EE
PT

:B
SD

F

a) Variance

LT

b) Balance c) Power d) Our
0

2 1

0

Fig. 5. Comparison of the average per-pixel MIS weights (b-d) to the rel-

ative variance of three techniques (a): path tracing with BSDF sampling

(PT: BSDF), with next-event estimation (PT: NEE), and light tracing (LT).

and light tracing) to the per-pixel average MIS weights of the three

heuristics. Next-event estimation (middle row) has close to zero

variance on the wall behind the light sources. This low variance

is partially due to the stratification on the image plane, which is

ignored by the balance and power heuristics when combining with

the unstratified light tracer. Therefore, the balance heuristic assigns

an excessive weight to the light tracer. The power heuristic amplifies

the issue further. Our approach accounts for the variance reduction

due to stratification and maintains the lower error of path tracing.

The second, Bathroom scene in Fig. 4 is a case where no sam-

pling technique has particularly low variance.We achieve small local

improvements, as seen in the zoom-ins, while the power heuris-

tic again worsens the results. Importantly, our overall error is not

(significantly) worse than that of the balance heuristic.

Finally, the Living room scene shows a case where the unstrat-

ified light tracer performs best. Here, our method also achieves

small local improvements while not performing worse than the

balance heuristic overall. In contrast, the power heuristic produces

20% larger error than the balance heuristic.

Even with coarse 1 spp variance estimates (without any filtering,

denoising, or regularization), our method has never performed sig-

nificantly worse than the balance heuristic in our experiments. The

shape of the vt factors, which quickly fall off to one (i.e., yielding

the balance heuristic) as the variance increases, plays an important

role in achieving this robustness.

6.2 Comparison to optimal weights

Kondapaneni et al. [2019] illustrated their optimal weights on a

simple defensive sampling example: They combine two techniques

for light selection in direct illumination computation: selecting the

light based on estimates of the unoccluded contribution cached in a

regular grid (the ‘almost proportional’ one) [Pharr et al. 2016], and

uniformly (the defensive technique). We implemented our heuristic

for the same application so as to compare it to the optimal weights.

The results for the Staircase scene are shown in Fig. 6; the

supplemental material contains additional results. The structure of

the figure is the same as in Fig. 4, where again the error numbers in

the parentheses are relative to the balance heuristic.

For the comparison to the approach by Kondapaneni et al., we

used their favored ‘direct’ estimator which has lower variance and

less overhead but also a small amount of bias. The comparisons in
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Our results are close to optimal MIS weights [Kondapaneni et al. 2019]

whenever one technique is significantly better than the rest (top zoom-in).
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Fig. 7. Incorporating the variance estimates into the balance heuristic (top

row), as we propose, greatly improves the robustness compared to using

these estimates on their own (bottom row).

this case are equal-sample, using just eight samples per technique

(and per pixel). For our heuristic, the comparison is also equal-time

to the balance and power heuristics. The approach by Kondapaneni

et al. is 5 − 10% slower per sample on our test scenes.

The Staircase scene contains two different cases where signifi-

cant improvements over the balance and power heuristics are possi-

ble: A low-variance problem (top row) and an example where the

negativity of the optimal weights can reduce the error, despite all

techniques having high variance (bottom row). For the low-variance

problem, our result is close to that of Kondapaneni et al.’s direct

estimator. However, our heuristic cannot be negative and therefore

cannot improve on the balance heuristic in the second case (where

the optimal weights are negative).

In conclusion, our method and the approach of Kondapaneni

et al. complement each other. Their method is provably optimal, yet

challenging to apply in practice. Ourmethod is simpler to implement,

but only ensures that the combined estimator is never worse than

the best technique alone, in an equal-sample comparison.

6.3 Comparison to weighting with variance estimates

Figure 7 compares our variance-aware MIS weights (top row) to

classical variance-based weighting (bottom row) on zoom-ins from

various scenes. In some cases, especially the simpler defensive sam-

pling application, using variance estimates alone can produce results

similar to our weights. Noise in the variance estimates, however, will
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Fig. 8. Comparison to using variance estimates computed with 2048 sam-

ples per pixel. Computing more accurate vt factors can improve the results

further, but at higher cost. Even the converged variances alone perform

worse than our approach with coarse estimates.

then manifest as visible artifacts in the image. Our method prevents

these artifacts due to the injection into the balance heuristic and

the lower bound of one (i.e., vt ≥ 1). While the variance estimates

are far too noisy to be usable on their own, incorporating them into

the balance heuristic, as we propose, yields improvements without

any visible artifacts.

We also compare the performance when using accurate variance

estimates (computed from 2048 samples). The results for direct

illumination on the Bathroom scene are shown in Fig. 8. Using the

accurate variance estimates alone performs worse than using those

same estimates with our approach.

6.4 Overhead

Computation-wise, the overhead of our method is negligible. How-

ever, storing the vt factors can require a significant amount of

memory if the number of combined techniques is very large.

In the bidirectional path tracer, our implementation computes

the vt factors for path lengths up to five – a total of 25 techniques.

Since we store vt every 8× 8 pixels, this requires roughly two bytes

per pixel on average – not much in the context of a typical renderer.

The memory footprint can be reduced further. Figure 9 shows

the vt factors for the direct and one-bounce indirect illumination in

the Bathroom scene. A large fraction of these vt factors are almost

one. Therefore, applying compression would significantly reduce

the memory requirements. We leave such optimizations for future

work as in our benchmarks the overhead has been insignificant.

7 LIMITATIONS AND FUTURE WORK

In addition to the downside of relying on estimated quantities, some

care has to be taken when applying our heuristic to biased tech-

niques. In this section we discuss such limitations and outline possi-

ble improvements. Lastly, we introduce other promising applications

for our heuristic.

7.1 Limitations

Error in variance estimates. Weighting using estimated quantities

can worsen the results when these estimates are highly inaccurate.

We have not encountered any such issues in our experiments, despite
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Fig. 9. The estimatedvt factors for the bidirectional path tracer techniques

in the Bathroom scene. The majority of pixels receive a factor close to one.
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Fig. 10. Equal-sample comparison for the proof-of-concept Metropolis com-

bination. The combination with our heuristic is the most robust: it retains

the lower variance of both the Metropolis and the MC approach.

basing our estimates on a single sample per pixel. There could,

however, be applications or particularly challenging scenes where

errors in the vt estimates cause issues.

There are several options to ameliorate such potential issues.

The images storing the vt factors can be filtered or denoised and

potential outliers could be clamped. Another approach, naturally, is

to increase the number of vt estimation samples, or to accumulate

better estimates progressively.

Narrow-support sampling pdfs. So far we have only considered

the case where the pdf of each individual technique is non-zero

over the entire integration domain. If this is not the case, weighting

based on the variance no longer makes sense. In that case, the

problem can be made recursive: A set of techniques, whose pdfs

together cover the entire domain, can be combined via the regular

balance heuristic, which is equivalent to sampling from the mixture

of these pdfs [Veach 1997]. This mixture can then be combined

with other sampling techniques using our variance-aware heuristic.

An alternative is to simply set the variance factors to one for all

narrow-support techniques.

7.2 Other applications

Efficiency. Our MIS weights help achieve robustness by prevent-

ing the noise from poorly performing techniques deteriorate the

quality that could be achieved by using only the samples from the

better techniques. However, for an algorithm to be truly efficient,

better MIS weights are only the first step: Ideally, we also want to

ensure that most samples are taken from the best-performing tech-

niques. There have been attempts to improve the sample allocation

based on the MIS-weighted contribution of previously taken sam-

ples [Šik et al. 2016; Grittmann et al. 2018; Hachisuka et al. 2014]. In

combination with such approaches, our MIS weights could achieve

a considerable increase in the efficiency of algorithms like vertex

connection and merging (VCM) [Georgiev et al. 2012a].

VCM. Bidirectional path tracing, on top of which we apply our

method, is a subset of the more powerful VCM algorithm [Georgiev

et al. 2012a; Hachisuka et al. 2012]. Therefore, we can expect that

the full VCM algorithm will benefit from similar improvements.

Specifically, since photon mapping and light tracing for direct illu-

mination are almost identical techniques, the direct-illumination

results with VCM will be identical to those of BPT. It is possible,

that our approach will improve on the VCM algorithm even further:

Recent work [Jendersie and Grosch 2018; Jendersie 2019] has shown

that the MIS weights for the vertex merging technique in VCM can

perform poorly in some cases. Our method could also help there.

Metropolis light transport. Our observation that existingMIS heuris-

tics neglect stratification has inspired us to experiment with a novel

MIS combination: Combining a Metropolized path tracer with a

regular Monte Carlo path tracer. Rendering methods based on the

Metropolis algorithm are often criticized for their lack of image

plane stratification [Cline et al. 2005; Šik and Křivánek 2018]. In a

proof-of-concept experiment, we therefore tried combining a pri-

mary sample space Metropolis path tracer (PSSMLT) [Kelemen et al.

2002] with a stratified MC path tracer, using MIS.

An equal-time comparison is shown in Fig. 10. The MC path

tracer, thanks to the stratification, can easily handle the direct il-

lumination in that scene, but struggles with the indirectly lit car

interior. PSSMLT easily resolves that more challenging interior, but

due to the lack of stratification exhibits much stronger noise in the

direct illumination (e.g., on the car exterior and the floor). While

the balance- and power-heuristic combinations retain the better

performance on the car interior, their unawareness of image plane

stratification results in higher levels of noise in the simpler direct

illumination. Our approach retains the better performance of both

techniques, achieving a more efficient combination.

The optimal weights [Kondapaneni et al. 2019] are not applicable

to such a combination.WithMetropolis methods, the exact sampling

densities are unknown and require approximations for use in MIS

[Šik et al. 2016; Kelemen et al. 2002]. Therefore, computing the

optimal MIS weights is impossible – a heuristic like ours is needed

for such a combination to perform well.
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8 CONCLUSION

We propose a novel weighting heuristic for multiple importance

sampling that incorporates variance estimates. We show that exist-

ing MIS heuristics neglect the impact of stratification, correlation,

and other effects on the variance – a shortcoming that can be ad-

dressed by incorporating variance estimates. We apply our theory

to bidirectional path tracing, defensive sampling, and a proof-of-

concept combination involving Metropolis sampling. Throughout

all our tests, even coarse estimates of the variance have been suffi-

cient to achieve significant improvements over the balance heuristic

in some cases, while – most importantly – never performing worse.
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