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Figure 1: A comparison of our new progressive vertex connection and merging (VCM) algorithm against bidirectional path tracing (BPT) and
stochastic progressive photon mapping (PPM) after 30 minutes of rendering. BPT fails to reproduce the reflected caustics produced by the
vase, while PPM has difficulties in handling the illumination coming from the room seen in the mirror. Our new VCM algorithm automatically
computes a good mixture of sampling techniques from BPT and PPM to robustly capture the entire illumination in the scene. The rightmost
column shows the relative contributions of the BPT and PPM techniques to the VCM image in false color.

Abstract

Developing robust light transport simulation algorithms that are
capable of dealing with arbitrary input scenes remains an elusive
challenge. Although efficient global illumination algorithms exist,
an acceptable approximation error in a reasonable amount of time
is usually only achieved for specific types of input scenes. To ad-
dress this problem, we present a reformulation of photon mapping
as a bidirectional path sampling technique for Monte Carlo light
transport simulation. The benefit of our new formulation is twofold.
First, it makes it possible, for the first time, to explain in a formal
manner the relative efficiency of photon mapping and bidirectional
path tracing, which have so far been considered conceptually incom-
patible solutions to the light transport problem. Second, it allows
for a seamless integration of the two methods into a more robust
combined rendering algorithm via multiple importance sampling.
A progressive version of this algorithm is consistent and efficiently
handles a wide variety of lighting conditions, ranging from direct
illumination, diffuse and glossy inter-reflections, to specular-diffuse-
specular light transport. Our analysis shows that this algorithm
inherits the high asymptotic performance from bidirectional path
tracing for most light path types, while benefiting from the efficiency
of photon mapping for specular-diffuse-specular lighting effects.
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1 Introduction

Light transport simulation is a central problem in photo-realistic
image synthesis. It has been an active area of research for decades
due to its utility in many applications, including architectural visual-
ization, industrial design, as well as the entertainment industry. In
the past years, considerable advances have been made with respect
to the efficiency of light transport algorithms, but the improvements
usually come with some sort of bias: often, some types of light
interactions are disregarded, or handled inefficiently. Such approx-
imations are sometimes acceptable, but often lead to a severe loss
of image fidelity (see e.g. [Křivánek et al. 2010]). Developing truly
robust light transport algorithms that can efficiently and accurately
render a wide variety of scenes remains an important challenge that
we address in this paper.
Bidirectional path tracing (BPT) [Lafortune and Willems 1993;
Veach and Guibas 1994] is among the most versatile light trans-
port algorithms. The true key to its robustness is the provably good
combination of various path sampling techniques using multiple
importance sampling (MIS) [Veach and Guibas 1995]. It has been,
however, widely acknowledged that BPT is not efficient for transport
paths with specular-diffuse-specular (SDS) configurations, where
the notion of ‘specular’ also includes sharp glossy interactions. This
is indeed an important practical limitation, because such paths occur
in all scenes containing specular objects and their image contribution
is especially important in some very common cases such as an object
enclosed in glass, an interior of a car or a building, etc. The reason
for this problem is that the path sampling techniques in BPT usually
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Figure 2: Combining BPT with PM via heuristic classification of
paths into caustic and non-caustic can be far from optimal (top
insets). Our combination based on multiple importance sampling
can be substantially more robust (bottom insets).

sample SDS paths with low probability density, which may even go
to zero if point light sources and pinhole cameras are allowed. Kollig
and Keller [2000] call this the problem of insufficient techniques.

Efficient handling of SDS paths, on the other hand, has long been
demonstrated with photon mapping (PM) [Jensen 2001]. A progres-
sive variant has recently drawn attention with its ability to converge
with a bounded memory footprint [Hachisuka et al. 2008]. However,
its inefficiency under diffuse lighting and its relatively low order of
convergence [Knaus and Zwicker 2011] make progressive photon
mapping impractical as a general global illumination solution.

Intuitively, a combination of BPT and PM would be beneficial, as the
two algorithms complement each other in terms of performance un-
der different lighting conditions. Indeed, PM has traditionally been
combined with some of BPT’s path sampling techniques through
heuristics such as separate direct lighting calculation, splitting of
photons into global and caustic maps, and final gathering. How-
ever, as discussed by Veach and Guibas [1995] and shown in Fig. 2,
such a heuristic combination can be far from optimal. Moreover, an
adaptation of these heuristics to glossy reflectance is not obvious.

Judging from the success of multiple importance sampling in im-
proving the robustness of BPT compared to its initial formulation,
we can expect that a MIS-based combination of BPT and PM will
yield a more robust solution than the aforementioned heuristics.
However, such a principled combination has not been shown so far
due to important differences in the mathematical frameworks used
to formulate these two algorithms (the path integral formulation for
BPT [Veach 1997], and density estimation for PM).

Contributions. In this paper, we present an integration of bidirec-
tional path tracing and photon mapping into a framework that can
efficiently handle a wide range of illumination effects. This is made
possible by our novel Monte Carlo interpretation of the photon map-
ping radiance estimator, which circumvents the concept of density
estimation and brings together these two algorithms that have so far
been considered conceptually incompatible. Our new reformulation
of photon mapping as a path sampling technique allows us to employ
multiple importance sampling to combine the two methods in a more
robust rendering algorithm that alleviates the problem of insufficient
techniques. A progressive version of this algorithm is consistent, and
we demonstrate its efficiently in handling a variety of lighting condi-
tions, ranging from direct illumination and diffuse inter-reflections
to SDS light transport. Our theoretical and empirical results show
that this progressive algorithm retains BPT’s high O(1/N) mean
squared error convergence rate for light paths that can be sampled by
BPT, as well as the efficiency of photon mapping for SDS lighting
effects. In summary, the main contributions of this paper are:
• A novel reformulation of photon mapping compatible with the

path integral formulation of light transport (Section 4).
• A robust light transport simulation algorithm that combines

BPT and PM via multiple importance sampling (Section 5).
• A progressive variant of the combined algorithm along with

an asymptotic analysis of its error convergence (Section 6).

2 Previous Work

Path tracing. The path tracing algorithm [Kajiya 1986] follows ran-
dom paths from the camera toward light sources. Dutré et al. [1993]
render caustics more efficiently by tracing paths from the light
sources. Since finding all high contribution paths by starting from
either end is difficult (i.e. has low probability density), bidirectional
path tracing (BPT) was developed to sample paths starting both from
the camera and from the light sources [Lafortune and Willems 1993;
Veach and Guibas 1994]. Veach [1997] formulates rendering as an
integration of a pixel measurement function over all light transport
paths. This path integral framework enables the combination of vari-
ous path sampling techniques in a provably good way using multiple
importance sampling [Veach and Guibas 1995], which is the real key
to the robustness of BPT. Our work reformulates photon mapping
as a new path sampling technique that can be combined with BPT’s
techniques in the same way, yielding a combined solution that is
more robust than either of the two algorithms alone.

Photon mapping. Photon mapping (PM) [Jensen 2001] is a global
illumination algorithm which approximates radiance at any point via
density estimation from particles called “photons”, distributed from
the light sources. Its popularity stems from its simplicity and ability
to render various lighting effects, including SDS paths. As pointed
out by Hašan et al. [2009] and Vorba [2011], photon mapping has
difficulties in scenes with many glossy objects. To alleviate this
problem, Vorba [2011] uses multiple importance sampling (MIS) to
combine the contributions of photons to radiance queries at different
eye sub-path vertices in a manner similar to our approach. However,
his expression for photon path pdfs disallows a meaningful applica-
tion of MIS to combine the PM and BPT estimators, which estimate
integrals w.r.t. different measures, as we detail in Section 4. Bekaert
et al. [2003] apply multiple importance sampling on top of their gen-
eralized kernel density estimator in a way similar to Vorba [2011].
Tokuyushi [2009] improves caustics on glossy surfaces through a
MIS-based combination of PM and final gathering estimates.

Unlike BPT, photon mapping is biased. Progressive photon map-
ping (PPM) modifies the original algorithm to diminish bias in the
course of computation [Hachisuka et al. 2008]. PPM handles SDS
paths more efficiently than BPT, but suffers from a lower asymp-
totic error convergence rate. Hachisuka et al. [2010] present an
error estimation framework for PPM. Stochastic progressive photon
mapping [Hachisuka and Jensen 2009] enables PPM to render distri-
bution ray tracing effects. Our method generalizes stochastic PPM
further, and combines it with BPT in a way that retains BPT’s higher
convergence rate for light paths that can be sampled by BPT.

Markov chain Monte Carlo. MCMC methods have been shown to
increase the probability density of sampling high-contribution paths
both in BPT [Veach and Guibas 1997] and PM/PPM [Fan et al. 2005;
Hachisuka and Jensen 2011]. Jakob and Marschner [2012] improve
the ability of the MCMC methods to sample SDS paths. These
approaches are orthogonal to the problem addressed in this work. In-
deed, enhancing the proposed algorithm through the use of a MCMC
sampler is expected to bring further efficiency improvements.

Many-light methods. The efficiency of many-light rendering has
recently drawn attention [Keller 1997; Walter et al. 2006; Hašan
et al. 2007; Ou and Pellacini 2011]. In their basic form, such meth-
ods suffer from energy losses that degrade image fidelity [Křivánek
et al. 2010]. Methods to alleviate these problems have been pro-
posed [Kollig and Keller 2004; Hašan et al. 2009; Davidovič et al.
2010; Walter et al. 2012] but none can efficiently handle SDS paths.

This paper builds upon our previous work [Georgiev et al. 2011] that
informally discusses the multiple importance sampling combination
of BPT and PPM. The concurrent work of Hachisuka et al. [2012]
addresses the same problem, but uses a significantly different theo-
retical formulation. We discuss these differences in Section 8.
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3 Background

This section reviews the basis of our derivations: multiple impor-
tance sampling, the path integral formulation of light transport, path
sampling techniques, and the photon mapping radiance estimate.

Multiple importance sampling. Monte Carlo methods evaluate
integrals of the form I =

∫
Ω
f(x) dµ(x), where f is a real-valued

function and µ is a measure on the integration domain Ω. Multiple
importance sampling (MIS) [Veach and Guibas 1995] constructs an
unbiased estimator for I by combining estimators from m different
distributions (or sampling techniques), each given by its probability
density function (pdf) pi, into a combined estimator:

〈I〉MIS =

m∑
i=1

1

ni

ni∑
j=1

wi(Xi,j)
f(Xi,j)

pi(Xi,j)
, (1)

where Xi,j are independent random variables with distribution pi.
The power heuristic wi(x) = [nipi(x)]β/

∑n
k=1[nkpk(x)]β is a

good way to combine sampling techniques in terms of minimizing
the estimator’s variance. The balance heuristic corresponds to β=1.

Path integral framework. In the path integral formulation of light
transport [Veach 1997], the pixel measurement I for a pixel is given
by an integral over the space of light paths:

I =

∫
Ω

f(x)dµ(x). (2)

Here, x = x0 . . .xk is a light path with k ≥ 1 edges, where the first
vertex x0 is on a light source, the last vertex xk is on the eye lens,
and vertices x1, . . . ,xk−1 are scattering points on the scene surfaces.
Ω is the space of paths of any length, dµ(x) = dA(x0) . . . dA(xk)
is the differential product area measure, and f is the measurement
contribution function for the considered pixel:

f(x) = Le(x0)G(x0↔x1)

[
k−1∏
i=1

ρs(xi)G(xi↔xi+1)

]
︸ ︷︷ ︸

T (x)
def
== path throughput

We(xk).
(3)

. . .

Here Le(x0) = Le(x0→x1) is the radiance emitted from x0 in the
direction of x1, We(xk) = We(xk−1→xk) is the pixel sensitivity
to light arriving at xk from the direction of xk−1 (arrow is in the di-
rection of light flow). ρs(xi) = ρs(xi−1→xi→xi+1) is the bidirec-
tional scattering distribution function (BSDF) at xi, G(xi↔xj) =

V (xi↔xj)
| cos θi,j || cos θj,i|
‖xi−xj‖2

is the geometry factor, and V (xi↔xj)

is the visibility term. Intuitively, f measures the contribution of
the radiance emitted from x0 to the pixel along the path x, which
becomes more explicit by writing f(x) = Le(x0)T (x)We(xk).

The path integral formulation enables the construction of an estima-
tor for a pixel value by first sampling a random path x connecting
the eye with a light source and then evaluating f(x)/p(x). Different
path sampling techniques can be combined by multiple importance
sampling, as is the case in bidirectional path tracing.

Path sampling techniques. The pdf p(x) of a light path describes
the joint distribution of the individual path vertices x0, . . . ,xk, and
is therefore given by the product of their conditional pdfs, p(x) =
p(x0, . . . ,xk) = p(x0) . . . p(xk). Bidirectional path tracing (BPT)
creates a path by sampling one sub-path from a light source and

Figure 3: Different techniques for sampling a light path, with the
corresponding pdf terms associated with each vertex. For paths
with k edges (here k = 3) bidirectional path tracing provides k + 2
sampling techniques. Vertex merging brings k − 1 new techniques
corresponding to merging at the k−1 different interior path vertices.

another one from the eye, optionally connecting them with an edge
(Fig. 3a,b). In this case, the conditional vertex pdfs are:

p(xj) =

{
p(xj−1→xj) if xj is on a light sub-path
p(xj+1→xj) if xj is on an eye sub-path,

(4)

where p(xi→xj) is the pdf for sampling the direction from xi to
xj , expressed w.r.t. the area measure. Two special cases, j = 0 on
a light sub-path and j = k on an eye sub-path, are the pdfs for the
starting point of the light and eye sub-paths, respectively.

In BPT, a length-k path with k + 1 vertices can be generated in
k+ 2 ways, using different path sampling techniques identified by a
pair (s, t), corresponding to the number of vertices on the light and
eye sub-paths, respectively. Unidirectional sampling corresponds
to the (s = 0, t = k + 1) and (s = k + 1, t = 0) techniques,
(Fig. 3a shows the former case). We refer to the remaining sampling
techniques as vertex connection because they involve an explicit
connection of the light and eye sub-path endpoints (Fig. 3b).

The key to the improved robustness of BPT, compared to its initial
implementation [Lafortune and Willems 1993; Veach and Guibas
1994], is the combination of the different path sampling techniques
into a MIS estimator using the power heuristic [Veach and Guibas
1995]. The reason is that MIS automatically diminishes the weight of
a sampling technique that is inappropriate (i.e. has a low pdf value)
for a given path. This is, however, only possible if alternative tech-
niques exist for sampling that path. But specular-diffuse-specular
(SDS) paths can only be found via unidirectional sampling, which
usually has low pdf, resulting in a high variance estimator. We
address this problem by adding new path sampling techniques, cor-
responding to photon mapping, into the combined estimator.

Photon mapping radiance estimate. Photon mapping (PM) com-
putes the scattered radiance Ls at a point x in direction ω via density
estimation from photons distributed throughout the scene. The well-
known photon map radiance estimate [Jensen 2001] reads:

Ls(x, ω) ≈
∑
j

Kr(‖x− xj‖)ρs(ωj ,x, ω)Φj , (5)

whereKr is a 2D filtering kernel with support radius r, and j iterates
over photons found within distance r from x, so xj and ωj are the
photon’s position and incident direction, respectively, and Φj is the
photon’s flux. The main difficulty that arises when trying to combine
PM with BPT into a robust estimator using MIS is the difference
in the mathematical frameworks in which the two algorithms are
defined. In particular, the above PM radiance estimate (5) does not
include the notion of path pdf necessary for MIS. We address the
problem in the next section by reformulating the radiance estimate
as a path sampling technique.
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4 Vertex Merging

Our goal is to combine photon mapping (PM) with bidirectional path
tracing (BPT) into a more robust algorithm via multiple-importance
sampling (MIS). The first step is to formulate the two algorithms in
a common mathematical language, for which we choose the path
integral framework, reviewed above. Since BPT is already naturally
defined in this framework, we only need to reformulate the PM
algorithm. This involves defining the light transport paths sampled
by PM with their associated pdfs that we could then plug into the
power heuristic. We refer to the path sampling techniques derived
from PM as vertex merging (VM), as one can intuitively think of the
radiance estimate (5) as merging the path vertices corresponding to
a photon and the radiance estimate location within a small neigh-
borhood (Fig. 3c). However, we underline that our derivation of the
path pdf departs from this intuitive notion.

Our discussion considers light paths of a fixed length k. The PM
radiance estimate is performed on the s-th vertex from the light,
which yields a single path sampling technique. An entire family of
techniques is then obtained by considering different locations of the
radiance estimate s ∈ [1, . . . , k − 1].

PM as a sampling technique for extended paths. A natural
approach to define a path sampled by PM would consider a single
photon located at x∗s and its tracing history as a sub-path x0x1 . . .x

∗
s

sampled form the light source. In a similar way, the point xs where
we perform the PM radiance estimate would be considered the
end point of a sub-path xsxs+1 . . .xk traced from the eye. The
PM radiance estimate (5) would then then complete a full length-k
extended path, which we define as x∗ = (x0 . . .x

∗
s ,xs . . .xk) and

illustrate in Fig. 4 left. (To make the distinction clear, in this section
we refer to the usual light paths x = x0 . . .xk as regular.) The pdf
of an extended path constructed this way would simply be the joint
pdf of all its vertices (including the photon at x∗s):

p(x∗) = p(x0 . . .x
∗
s) p(xs . . .xk)

= [p(x0) . . . p(xs−1→x∗s)] [p(xk) . . . p(xs+1→xs)].
(6)

Discussion. We have now defined PM as path sampling technique
for extended paths, with an associated pdf. We could directly use
these definitions to apply MIS and combine the results of PM ra-
diance estimates at different vertices of an eye sub-path. Indeed,
that would correspond to what was done in the previous work of
Vorba [2011] (with the difference that he uses pdfs w.r.t. the solid
angle measure). Note, however, that we can not use the above def-
initions for a MIS-based combination BPT and PM. The reason is
that for a given path length (i.e. number of edges), the extended
paths sampled by PM have one extra vertex, the photon at x∗s , com-
pared to the regular paths sampled by BPT. The pdf of an extended
path is consequently expressed w.r.t. a different, higher-dimensional
product area measure than the pdf of a regular path of the same
length. However, the power heuristic in MIS expects the pdfs to be
expressed w.r.t. the same measure to yield a meaningful weight.

To combine BPT and PM using MIS, we must express the pdfs of
same-length paths sampled by BPT and PM w.r.t. the same measure,
i.e. both algorithms should conceptually operate either in the space
of the extended or the regular paths. Both options are possible, and
we choose the space of regular paths, because doing so preserves the
original path integral formulation we reviewed in Section 3.

PM as a sampling technique for regular paths. We now consider
that PM samples regular, not extended, paths by excluding the
photon at x∗s from the generated path. That is, a PM radiance
estimate at vertex xs creates regular paths x = x0 . . .xk (one such
path for each photon). The radiance contribution of such a path now
contains an extra area integration that corresponds to blurring by

*

. . .

. . 
.

*

. . .

. . 
.

Figure 4: Left: Photon mapping can be considered to sample an
extended path x∗ of length k that has k + 2 vertices. Right: To
remain compatible with the path integral framework for BPT, we
interpret this process as sampling a regular path x of the same
length that has only k + 1 vertices. The path is accepted only if the
photon at x∗s lies within distance r to xs.

the Kr kernel to which the path integral is oblivious, as we detail
in Appendix A. We interpret the photon as a Monte Carlo sample
used to estimate that integral. More importantly, the photon serves
as a Russian roulette random variable that conditions the acceptance
of the proposed path. The path x is accepted if and only if the
photon location x∗s is within distance r from the radiance estimate
location xs. This interpretation is in line with the traditional view
and implementation of photon mapping, where photons outside of
the search radius are not considered in the radiance estimate.

Path pdf. The pdf of a regular path x created with the above proce-
dure is pVM(x) = Pacc(x) pVC(x), where pVC(x) is the pdf for the
BPT vertex connection (VC) technique that samples x by connecting
sub-paths with endpoints xs−1 and xs, as described in Section 3
(Fig. 4 right). The acceptance probability of the path is given by:

Pacc(x) = Pr(‖xs − x∗s‖<r) =

∫
AM

p(xs−1→x)dx

≈ |AM| p(xs−1→x∗s) ≈ πr2 p(xs−1→x∗s),

(7)

where AM = {x ∈ M | ‖xs−x‖ ≤ r} is the set of the surface
points within distance r of xs. Exact analytic evaluation of the
integral in (7) is generally impossible. To make the calculation fea-
sible, we first assume constant pdf p inside AM. This is a common
assumption made by the progressive radiance estimation [Hachisuka
et al. 2008] and its asymptotic analysis [Knaus and Zwicker 2011].
This allows us to take p(xs−1→x) out of the integral and replace it
by p(xs−1→x∗s), which is known. Second, we make the common
photon mapping assumption that AM is a disk with radius r, and
area πr2, centered around xi. Note that the accuracy of the resulting
Pacc approximation reduces in areas of geometric variation and when
p is far from constant, e.g. when xs−1 has a very sharp glossy BSDF.
However, note that the approximation converges to the true value as
the radius r goes to zero. Also, for x∗s inside AM coming from a
specular vertex xs−1 the acceptance probability is simply Pacc = 1.

The final path pdf reads:

pVM(x) = Pacc(x) pVC(x) ≈ [πr2 p(xs−1→x∗s)]pVC(x). (8)

This path pdf formula is not arbitrary; indeed, it describes the actual
random events that occur during the path construction in PM. Note
that the pdf is expressed w.r.t. the same measure as any length-k
regular path sampled by BPT. The pdf of vertex x∗s only appears as a
part of the approximation of the acceptance probability Pacc, which
is ‘unitless’1, and therefore has no impact on the measure. Note that
this approximation makes the path pdf expression (8) symmetric, in
the sense that it includes the densities of all sampled vertices.

1Considering that a vertex pdf has the units of [m−2] and πr2 is in [m2].
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Figure 5: Vertex merging (VM) explains why photon mapping can
be more robust in handling SDS light transport than BPT. It is
not because it can find these paths more easily, but because it can
efficiently reuse light sub-paths across pixels. Without reuse, with
equal light source and merging disk areas, photon mapping performs
similarly to unidirectional path sampling.

The acceptance probability term πr2 p(xs−1→x∗s) in the path pdf
is useful for understanding the efficiency of photon mapping, as we
show in Section 4.1. The dependence of this term on the radius r
will also prove crucial for the good asymptotic performance of our
progressive combined algorithm in Section 6.

Summary and discussion. We have reformulated photon mapping
as a path sampling technique, which we call vertex merging. This
formulation provides us with a clear definition of paths sampled
by performing a PM radiance estimate, with their associated pdfs,
which are expressed w.r.t. the same measure as in BPT. We use the
path pdf in Section 5 for a MIS-based combination of PM and BPT.
In Appendix A we derive the measurement contribution function, as
well as the path integral actually estimated by photon mapping.

4.1 Efficiency of Different Path Sampling Techniques

Our vertex merging (VM) formulation allows us to analyze the
relative efficiency of different path sampling techniques in different
settings by comparing their pdfs for a given path. This tool has
been long available to BPT, as the power heuristic is based on the
observation that a higher pdf most often results in a lower-variance
estimate [Veach and Guibas 1995]. Vertex merging allows us to
include photon mapping in the comparison and to reason about its
efficiency as a Monte Carlo sampling technique.

Sampling densities. Note in equation (8) that for any path, the
VM pdf is at most equal to that of vertex connection (VC). This is
due to the acceptance probability Pacc ≤ 1, given by equation (7).
Consider the path in Fig. 4 as an example. For practical values of r,
the merging disk often spans a small solid angle as seen from xs−1,
depending on its distance to that vertex. If the vertex xs−1 is diffuse,
Pacc is low, as it is equal to the probability of sampling a ray inside
that solid angle. The resulting VM path pdf pVM can then be six
or more orders of magnitude lower than the corresponding VC pdf.
It can be also shown that if the merging disk area equals the light
source area, then unidirectional sampling (US) and VM can have
almost equal pdfs. The intuition is that the probability of hitting the
light would be roughly the same as for hitting the merging disk.

Path reuse efficiency. Based on the above observations, we can de-
duce that VM, and thus photon mapping (PM), is not an intrinsically
more efficient sampling technique than the BPT techniques. How-
ever, the power of VM is its computational efficiency. It performs

conditional path concatenation, which is as cheap as neighborhood
checking. This enables the reuse of a large number of light sub-paths
at the cost of a single range search. Therefore, in cases where the
pdfs for the other techniques are not much higher than for VM, the
latter can result in a much lower-error estimate, due to its efficient
brute-force variance reduction capabilities. The most prominent
example for such cases are the SDS paths. We demonstrate this in
Fig. 5 by comparing the quality achieved by VM without and with
path reuse against US in the same time. Without reuse, VM performs
like path tracing without explicit direct lighting computation.

5 A Combined Light Transport Algorithm

In this section we take advantage of our vertex merging formulation
to combine PM and BPT into a more robust light transport algorithm.
Because vertex merging formulates PM as a path sampling tech-
nique with an associated pdf, we can now directly apply multiple
importance sampling (MIS) to combine the different path sampling
techniques from PM and BPT, illustrated in Fig. 3, in a way that
minimizes the variance of the resulting estimator. For a path of
length k, BPT offers k + 2 techniques, corresponding to different
lengths of the light and eye sub-paths. Vertex merging adds k − 1
more techniques, corresponding to “merging” at different interior
vertices on the path.2 We call the combined rendering algorithm,
described below, vertex connection and merging (VCM).

This section presents a formulation of VCM that assumes a fixed
radius r. Since VCM includes biased estimators, its combined
estimator will also be biased for any merging radius r > 0. However,
in Section 6 we present a progressive version of the algorithm that
converges to the true value as r approaches zero.

5.1 Mathematical Formulation

A pixel estimator of (2), combining weighted contributions CVC

from vertex connection3 estimators 〈I〉VC and weighted contribu-
tions CVM from vertex merging estimators 〈I〉VM using MIS, reads:

〈I〉VCM = CVC + CVM

=
1

nVC

nVC∑
l=1

∑
s≥0,t≥0

wVC,s,t(xl) 〈I〉VC(xl) +

1

nVM

nVM∑
l=1

∑
s≥2,t≥2

wVM,s,t(xl) 〈I〉VM(xl),

(9)

which is an extended version of the BPT estimator [Veach 1997,
p. 300]. It considers an eye sub-path through the pixel, whose ver-
tices are connected to the vertices of nVC light sub-paths and po-
tentially merged with the vertices of nVM light sub-paths. Term
evaluations, dependent on whether vertex connection or merging
is used, are denoted by subscripts VC and VM, respectively. The
subscript s, t corresponds to a path constructed from a light sub-
path with s vertices and an eye sub-path with t vertices. The power
heuristic weight for technique v, s, t has the usual form

wv,s,t(x) =
nβv p

β
v,s,t(x)

nβVC

∑
s′≥0,t′≥0

pβVC,s′,t′(x) + nβVM

∑
s′≥2,t′≥2

pβVM,s′,t′(x)
,

(10)

where v can be VC or VM. Note that the weight of a technique is
amplified by the total number of samples, i.e. light paths, it uses.

2In practice, we do not consider merging at the path end-vertices since di-
rectly evaluating light emission or sensor sensitivity is usually more efficient.

3We consider here unidirectional sampling as a special case of vertex con-
nection with zero vertices on the light or eye path, respectively (Section 3).
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1: function RENDER(r)
2: I Stage 1: Light path sampling
3: lightPaths = TRACELIGHTPATHS(pixelCount)
4: CONNECTTOEYE(lightVertices)
5: BUILDRANGESEARCHSTRUCT(lightVertices)
6: I Stage 2: Eye path sampling and pixel estimator construction
7: for i = 1 to pixelCount do
8: eyeVertex = TRACERAY(SAMPLEPIXEL(i))
9: while eyeVertex is valid do

10: I Unidirectional sampling (US)
11: if eyeVertex is emissive then
12: ACCUM(eyeVertex, US, r, i)
13: end if
14: I Vertex connection (VC)
15: for lightVertex in lightPaths[i] ∪ SAMPLELIGHTPOINT() do
16: ACCUM(CONNECT(eyeVertex, lightVertex), VC, r, i)
17: end for
18: I Vertex merging (VM)
19: for lightVertex in RANGESEARCH(eyeVertex, r) do
20: ACCUM(MERGE(eyeVertex, lightVertex), VM, r, i)
21: end for
22: eyeVertex = CONTINUERANDOMWALK(eyeVertex)
23: end while
24: end for
25: end function
26: I Accumulates the pixel measurement estimate due to a given path
27: function ACCUM(path, technique, r, i)
28: contrib = MEASUREMENTCONTRIBUTION(path, technique, r)
29: pdf = PDF(path, technique, r)
30: weight = POWERHEURISTIC(path, technique, pdf )
31: image[i] += weight * contrib / pdf
32: end function
Figure 6: Pseudocode for rendering an image using our combined
VCM algorithm, given a maximum vertex merging distance r.

The computational efficiency of vertex merging allows in practice
nVM to be much higher than nVC. Usually, nVM would be the total
number of light sub-paths for the image and nVC = 1. As discussed
in Section 4.1, path reuse and the consequent brute-force variance
reduction is the key to the efficiency of the vertex merging technique.

5.2 Implementation

Since path sampling is expensive, it is desirable to amortize this
effort. The BPT implementation according to Veach [1997] reuses
sub-paths by connecting every eye sub-path vertex to every vertex
on one light sub-path. Vertex merging lends itself to a substantially
more efficient path reuse scheme: thanks to the low cost of range
query, an eye sub-path vertex can be potentially merged with vertices
of a large number of pre-generated light sub-paths. To maximize
path reuse, our algorithm runs in two stages, separating the sampling
of the light and eye sub-paths, just like in photon mapping.

An outline of the algorithm is given in Fig. 6. In the first stage, we
trace a number of sub-paths from the light sources, connect their
vertices to the eye, and build a range search data structure over
them (lines 3-5). In the second stage, we trace eye sub-paths by
performing a random walk for each pixel. Upon sampling an eye
vertex, we check if it lies on a light source and possibly accumulate
the emitted radiance (lines 11-13). Then, we connect it to the vertices
of one of the pre-generated light sub-paths, similarly to BPT (lines
15-17). To reduce correlation, we follow Veach [1997] and do not
store the first vertex of a light sub-path, instead connecting every eye
vertex to a new, randomly sampled point on a light source. Finally,
we perform a range search to merge all light sub-path vertices that
lie within the r-neighborhood of the current eye vertex (lines 19-
21), similarly to photon mapping. We construct the estimate for
each generated full path, evaluate its MIS weight, and accumulate
the weighted estimate into the running pixel estimate (lines 27-32).
Most of the terms required to evaluate path contributions and pdfs
are stored with the sub-path vertices for improved efficiency. Please
check our open-source reference implementation for more details.

6 Achieving Consistency

Apart form the usual variance in the form of noise, the images gener-
ated by our combined algorithm described above contain systematic
error (bias) in the form of blur, inherited from vertex merging. In
this section, we show that the combined algorithm can be made
consistent by progressively reducing the merging radius r and accu-
mulating the resulting images, such that the variance and bias vanish
in the limit, much like in the progressive photon mapping (PPM)
algorithm proposed by Knaus and Zwicker [2011].
The progressive variant of the pixel value estimator (9) corresponds
to averaging the results of N independent rendering iterations:

〈I〉VCM =
1

N

N∑
i=1

(CVC,i + CVM,i) , (11)

where CVC,i and CVM,i are as in (9), but use a new set of light and
eye sub-paths for each iteration i, and a reduced merging radius
ri = r1

√
iα−1, where α ∈ (0; 1) is a user parameter. This simple

radius reduction scheme, derived in the supplemental document, is
asymptotically equivalent to that of Knaus and Zwicker [2011], but
is easier to compute for each iteration independently.

6.1 Asymptotic Error Analysis

As discussed earlier, an important advantage of BPT over PPM
is its higher error convergence rate. This rate measures how fast
the estimate approaches the true value with the growing number of
samples N . BPT has a mean squared error (MSE) convergence rate
of O(1/N) [Veach 1997]. In Appendix B we show that the optimal
MSE rate of PPM is O(1/N2/3), reached for α = 2/3. Since
our progressive combined estimator (11) is a weighted average of
vertex connection (VC) and vertex merging (VM) estimators, its
MSE convergence rate must necessarily lie between the rates for
BPT and PPM. We show next that, in fact, the MSE of the combined
estimator converges asymptotically as fast as that of BPT for light
paths that can be sampled by BPT.

We first perform asymptotic simplifications w.r.t. the iteration
counter i, using ri=O(

√
iα−1) from our radius reduction scheme.

Knaus and Zwicker [2011] have shown that PPM, and thus VM, es-
timators have Var[〈I〉VM] = O(1/r2

i ) and Bias[〈I〉VM] = O(r2
i ).

In contrast, the unbiased VC estimators are independent of ri:

Var[〈I〉VC] = O(1) Bias[〈I〉VC] = 0

Var[〈I〉VM] = O(i1−α) Bias[〈I〉VM] = O(iα−1).
(12)

For any path x and any s and t, we have pVC,s,t(x)=O(1), as the
path pdf for VC is independent of ri. From equation (8) it follows
that pVM,s,t(x)=O(iα−1). Substituting in (10), and using α−1<0:

wVC,s,t(x) =
O(1)

O(1)+O(iβ(α−1))
= O(1)

wVM,s,t(x) =
O(iβ(α−1))

O(1) +O(iβ(α−1))
= O(iβ(α−1)).

(13)

Recall that β is the power heuristic parameter. Note that while
the weights of VC techniques are asymptotically constant, the VM
weights decrease as the iteration index i increases.

Variance. The variance of the progressive estimator (11) is

Var[〈I〉VCM] =
1

N2

N∑
i=1

(Var[CVC,i] + Var[CVM,i]) . (14)

The sums over sub-paths inCVC,i andCVM,i (see (9)) can be simpli-
fied away, as they are independent of i. Var[CVC,i] and Var[CVM,i]
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now reduce to the variances (12) weighted by the weights (13):

Var[〈I〉VCM] =
1

N2

N∑
i=1

(
O(1)O(1) +O(i2β(α−1))O(i1−α)

)
=

1

N2

N∑
i=1

O(1)+
1

N2

N∑
i=1

O(i(2β−1)(α−1))

=
1

N2
NO(1) +

1

N2
NO(N (2β−1)(α−1))

= O(N−1) +O(N2β(α−1)−α) = O(N−1),

(15)

where in the last step we assume 2β(α−1)−α < −1. For practical
values of β ≥ 1 this inequality holds, since α ∈ (0; 1). This means
that the variance of the combined estimator is independent of α, and
in fact has as high order as the variance of BPT.
Bias. For the bias of the estimator (11) we analogously obtain:

Bias[〈I〉VCM] =
1

N

N∑
i=1

(Bias[CVC,i] + Bias[CVM,i])

=
1

N

N∑
i=1

(
0+O(iβ(α−1))O(iα−1)

)
= O(N (β+1)(α−1)).

(16)

This means that the bias of the combined estimator diminishes faster
than that of PPM for the same α value, since β > 0 and (α−1) < 0.
Mean squared error (MSE). Finally, for the MSE of (11), which
measures the total expected error of the estimate, we get:

MSE[〈I〉VCM] = Var[〈I〉VCM] + Bias[〈I〉VCM]2

= O(N−1) +O(N2(β+1)(α−1)),
(17)

which, for α ≤ 2β+1
2β+2

, has an optimal convergence rate of O(N−1),
equal to that of unbiased estimators. When using the balance heuris-
tic, i.e. β = 1, this optimal error convergence rate is achieved for
any α ∈ (0; 0.75]. This means that our combined algorithm inherits
the higher convergence rate from bidirectional path tracing, and is
thus asymptotically faster than progressive photon mapping, whose
maximum MSE convergence rate is only O(1/N2/3). Moreover,
this result is achieved for a wide range of values for the parameter
α. Note that this result only holds for paths that can be sampled by
BPT; the contribution of paths without two subsequent non-specular
vertices, starting on a point source and ending on a pinhole cam-
era [Veach 1997], still converge at the slower rate of PPM.

Discussion. The intuition behind the high convergence rate of
our progressive VCM algorithm is that the contribution of vertex
merging (VM) in the progressive estimate diminishes as the number
of iterations grows, as illustrated in Fig. 7. As we progressively
shrink the radius ri, we increase variance of VM (equation (12)).
The power heuristic automatically compensates for this by assigning
a reciprocal weight (equation (13)). The resulting algorithm is thus
asymptotically equivalent to BPT. However, VM brings efficient
initial variance reduction, which helps to faster achieve acceptable
image quality with a finite number of samples, as we show next.

Figure 7: Relative contributions of vertex connection (VC) and
vertex merging (VM) at different rendering iterations, indicating
that VM’s contribution to the average estimate diminishes over time.

7 Results

This section presents an empirical evaluation of our method. We
compare three algorithms in the paper: (1) bidirectional path trac-
ing (BPT), (2) progressive photon mapping (PPM), and (3) our
combined progressive vertex connection and merging (VCM). The
supplemental material provides additional results for (4) path tracing,
(5) Metropolis light transport, (6) an algorithm that combines BPT
and PPM based on a classification of paths as caustic and non-caustic,
as well as images with longer rendering time (30 minutes), relative
reference error images, and perceptual difference measurements.

Setup. Rendering is performed progressively with one eye sub-path
per pixel per iteration, at resolution 1024 × 768. Each iteration
starts by sampling the same number of light sub-paths as there are
image pixels (i.e. ≈ 786k). All light sub-paths are reused by the
PPM and vertex merging estimators for each pixel, while for vertex
connections in BPT and in our VCM algorithm we associate one
light sub-path with each pixel (i.e. nVM ≈ 786k and nVC = 1
in the combined estimator (9)). Our PPM implementation closely
follows Hachisuka and Jensen [2009]. We use a radius reduction
parameter α = 2/3 for both PPM and our VCM. All measurements
have been obtained on a 4-core Intel Core i7-860 2.8GHz processor
machine using a simple CPU ray tracer. We also found our algorithm
easy to add on top of an existing GPU BPT implementation, and
achieved a preliminarily speed-up of 6-10× over the CPU version.

Scenes. The Living room scene in Fig. 1 shows an environment
with different “illumination scales”. Most of the diffuse illumination
comes from far away, resulting in excessive noise in PPM. The
objects on the desk are lit by two local area light sources, which, in
combination with the mirror and the vases, produce caustic paths that
are difficult for BPT, but well handled by PPM. Our combined VCM
algorithm handles all light paths robustly, automatically finding a
balance between the many sampling techniques it has at its disposal.

Fig. 8 compares images of three scenes rendered by the three algo-
rithms in 4 minutes. We compare unconverged images so that the
differences are easily perceived. The reference images were obtained
using PPM for the Mirror balls scene, while our VCM algorithm
was used for the other scenes, as none of the other algorithms was
able to provide noise-free results in a feasible amount of time.

The Bathroom scene is a compact environment with moderately
glossy tiles and highly glossy metal elements, illuminated by two
small area lights, each almost fully enclosed in a metal-glass shell.
This configuration poses a challenge to BPT and PPM. Our VCM
handles all light interactions robustly, as it not only adaptively com-
bines the two methods, but also includes more sampling techniques
– unlike PPM, it merges light vertices at every eye sub-path vertex.
The benefit is clearly visible in the inset of the water tap in Fig. 8.

The highly glossy Car with specular chrome elements is placed
in a semi-open studio environment, illuminated by two area lights
from above. The interior is additionally lit by a small area light
enclosed in a transparent shell. This illumination, seen through the
windows, and the reflections of the caustics on ground in the exterior
are difficult for BPT. On the other hand, PPM performs poorly on the
diffuse illumination and on the glossy inter-reflections, e.g. between
the tire and the fender. Our VCM renders a smooth low-noise image.

The Mirror balls scene is lit by concentrated light coming from
the metal-enclosed area lights on the ceiling, focused by the lamp-
shade lenses. The entirely caustic illumination, which is additionally
reflected in the balls, makes this scene well suited for PPM. BPT still
handles well the directly visible caustics via vertex connections to
the camera, but relies on unidirectional sampling to find reflections
of these caustics. Even though VCM is more than 2× slower per
iteration than PPM, and thus slightly noisier on the reflected caustics,
it once again delivers the highest overall image quality.
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Convergence. To verify that our VCM algorithm converges to
the correct solution, we measure the root mean squared (RMS)
difference between the images produced by VCM and PPM on the
Mirror balls scene. Fig. 9 left shows a log-log plot of the steadily
decreasing difference over time. The difference image at the end of
the measurement indicates that any remaining variations between the
two solutions are only due to random noise. The log-log reference
error plots for all three algorithms in Fig. 9 right clearly show that
our combined VCM algorithm converges at a higher rate than PPM.

8 Discussion

Parameter choice. Two parameters that our progressive VCM
algorithm inherits from PPM are the initial merging radius r1 and its
reduction rate α. For both PPM and our VCM, we globally set r1 to
0.01%− 0.07% of the scene’s bounding box. For a fair comparison
against PPM, we use α = 2/3 for all measurements. In general, for
VCM we recommend setting r1 smaller than for PPM and α = 0.75.
Such settings introduce less initial bias, and maximize the variance
convergence rate of vertex merging and thus its efficiency too.

Limitations. Our VCM algorithm inherits from PM the ability
to approximately capture SDS paths due to point light sources,
which BPT cannot sample. Therefore, the convergence rate of the
contribution of such paths in our progressive VCM is as low as in
PPM. This limitation does not apply to our scenes, as we use only
physically plausible light sources with finite area. Slightly counter-
intuitively, this means that, in the presence of specular objects, area
light sources are asymptotically cheaper to handle than point lights.

While our combined VCM algorithm is more robust than each of
its ingredients alone, it does not perform better on transport paths
that are poorly handled by both BPT and PM. Such paths are, for
example, caustics falling on a highly glossy surface. Efficient han-
dling of such cases is a challenging avenue for future work. An
interesting possibility would be to employ Markov Chain Monte
Carlo techniques on top of VCM, e.g. [Jakob and Marschner 2012],
which would also improve its efficiency in highly occluded scenes.

Concurrent work. The concurrent work of Hachisuka et al. [2012]
also combines BPT and PM using multiple importance sampling
(MIS). Their resulting combination is equivalent to ours, but as a
major difference to our approach, they express BPT path pdfs in an
extended, higher-dimensional space, by considering random path
vertex perturbations. In addition, they analyze MIS weighting in the
presence of biased sampling techniques. Our derivations focus on
the optimal asymptotic behavior of the progressive estimator (11).

9 Conclusion

Our work addresses efficient light transport simulation under a
wide variety of lighting configurations, including specular-diffuse-
specular light paths. The key idea is to reformulate photon mapping
in the path integral framework, which enables the use of multiple
importance sampling for its efficient combination with bidirectional
path tracing in a single, unified rendering algorithm. We show that
this algorithm is more robust than bidirectional path tracing and pho-
ton mapping alone, while achieving a higher order of convergence
than progressive photon mapping. We believe that our solution has
an immediate practical utility in a wide range of applications, espe-
cially in predictive rendering systems, both interactive and offline,
where robustness under different lighting setups is critical.
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A Additional Vertex Merging Derivations

This appendix derives the measurement contribution function cor-
responding to the photon mapping (PM) path sampling techniques
discussed in Section 4, as well as the path integral estimated by PM.

A.1 Contribution Function for Extended Paths

We first write the pixel measurement estimator corresponding to the
PM radiance estimate (5). Its expected value is the path integral
estimated. Finally, the path integral’s integrand is defined to be the
desired contribution function. As in Section 4, we fix the path length
k and the vertex index s where the radiance estimate is performed.

PM pixel measurement estimator. The contribution of a photon
at x∗s to a pixel via a radiance estimate (5) performed at xs is:

〈Ik,s,r〉 = Φ(x∗s)
[
Kr(‖x∗s − xs‖)ρs(x

∗
s ,xs)

]︸ ︷︷ ︸
Qr(x

∗
s ,xs)

def
== photon weight

W (xs).
(18)

ρs(x
∗
s ,xs) = ρs(xs−1→x∗s ,xs,xs→xs+1) denotes the BSDF at

xs evaluated for the incoming direction xs−1→x∗s and outgoing
direction xs→xs+1, just like in the PM radiance estimate. The flux
Φ(x∗s) carried by the photon, and the cumulative importanceW (xs),
expressed using the notation defined in Section 3, are [Jensen 2001]:

Φ(x∗s)=
Le(x0)T (x0 . . .x

∗
s)

p(x0) . . . p(xs−1→x∗s)
W (xs)=

T (xs . . .xk)We(xk)

p(xk) . . . p(xs+1→xs)
.

Path integral and contribution function. The path integral actu-
ally estimated by the estimator (18) is given by its expected value:

Ik,s,r = E[〈Ik,s,r〉] =

∫
Mk+2

fk,s,r(x
∗) dµk+2(x∗) (19)

whereM is the scene surface and dµi denotes the differential area
product measure on the space Mi. We define fk,s,r to be the
measurement contribution of extended paths:

fk,s,r(x
∗)=Le(x0)T (x0 . . .x

∗
s)Qr(x

∗
s ,xs)T (xs . . .xk)We(xk).

Note the extra area integration in (19) compared to the regular path
integral (2), for a given path length k. This integration over the pos-
sible positions of vertex x∗s , i.e. the photon, corresponds to blurring
by the kernel Kr , a well known effect of kernel density estimation.

A.2 Reducing the Path Integral Dimension

As discussed in Section 4, we need to express the PM path inte-
gral (19) as an integral over regular, not extended paths. We achieve
this by considering the extra area integral in (19) as a nested integra-
tion problem to which the path integral is oblivious:

Ik,s,r =

∫
Mk+1

[∫
M
fk,s,r(x

∗) dA(x∗s)

]
dµk+1(x)

=

∫
Mk+1

Fk,s,r(x) dµk+1(x),

(20)

Here x is a regular light path created from an extended path x∗

by leaving out the x∗s vertex and concatenating all the remaining
vertices. The function Fk,s,r evaluates the contribution of a regular
path x by blurring in an r-neighborhood around xs, described by
an area integral of fk,s,r , i.e. Fk,s,r(x) =

∫
M fk,s,r(x

∗) dA(x∗s).
(Note that it is the small support of the kernel Kr inside fk,s,r that
effectively limits the integration to the neighborhood of xs.)

Formally, we define vertex merging as a path sampling technique for
Monte Carlo estimation of (20). That is, VM samples regular paths,
and uses Fk,s,r(x) as the contribution function. The path pdf is
derived in Section 4. We now focus on the evaluation of Fk,s,r(x).

Contribution evaluation. The contribution function Fk,s,r(x) is
itself defined as an integral (see equation (20)). We can obtain a
one-sample MC estimate of Fk,s,r(x) using x∗s , i.e. the photon:

〈Fk,s,r(x)〉 = fk,s,r(x
∗)
/[ p(xs−1→x∗s)∫

AM
p(xs−1→x)dx

]
, (21)

where we normalize p(xs−1→x∗s) to obtain a valid pdf over AM,
since only points x∗s inside this set survive the Russian roulette used
to decide if the path should be accepted, as described in Section 4.

Vertex merging estimator. Let us now construct the estimator
〈Ik,s,r〉VM = 〈Fk,s,r(x)〉/pVM(x), using the path pdf pVM(x):

〈Ik,s,r〉VM =
fk,s,r(x

∗)[
p(xs−1→x∗s)∫

AM
p(xs−1→x)dx

]
pVM(x)

=
fk,s,r(x

∗)

p(xs−1→x∗s)pVC(x)
.

We have arrived at an expression for the pixel estimator (18). This
result shows that our reformulation of PM as a sampling technique
for regular paths is compatible with the classic view of PM, because
the final estimators for both views are the same. The importance of
our view is that it clearly separates the path pdf from the contribution
function, thereby allowing PM to be combined with BPT via MIS.

B Optimal Error Convergence Rate of PPM

The rates of the variance and bias of a progressive photon mapping
estimator 〈I〉N after N iterations are Var[〈I〉N ] = O(1/Nα) and
Bias[〈I〉N ] = O(1/N1−α), where α is the user-specified param-
eter that trades off variance and bias [Knaus and Zwicker 2011,
Appendices C, D, E, F]. Thus, the mean squared error (MSE) is:

MSE[〈I〉N ] = Var[〈I〉N ] + Bias[〈I〉N ]2

= O(1/Nα) +O(1/N2(1−α)).
(22)

The maximum MSE rate is then O(1/N2/3), reached for α = 2/3.
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Figure 8: Three scenes rendered using bidirectional path tracing (BPT), progressive photon mapping (PPM), and our combined algorithm
(VCM) from Section 6. The reference images on the left have been rendered in 24 hours; the rest of the shots have been taken after 4 minutes of
rendering. The numbers in parentheses denote the number of rendering iterations, proportional to the total number of samples, taken by each
algorithm in the given time. The difficult lighting in these scenes, due to the complex light interactions between diffuse, glossy and specular
objects, is challenging for both BPT and PPM. Our VCM algorithm employs more sampling techniques than BPT and PPM together, and
handles all light interactions robustly by finding a good mixture of them for each individual light path. The achieved visual robustness is clearly
visible in the insets. (Readers of the electronic version are encouraged to zoom in the document for closer inspection.)
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Figure 9: Left: A comparison between our progressive VCM algorithm against PPM on the Mirror balls scene. The RMS image difference
plot shows that our algorithm and PPM converge to the same solution. The 64× amplified colorcoded difference image, taken at the end of the
measurement, indicates that any remaining differences are due to random noise. Right: Mean absolute (L1) and root mean squared (L2)
log-log reference difference plots for the three algorithms compared on the four scenes shown in Figures 1 and 8. The plots show that our
combined VCM algorithm converges at a higher rate than PPM. The oscillations in the plots are due to the ‘fireflies’ caused by low sampling
probability of high contribution paths which increase the error of the produced image when found occasionally. For BPT and PPM, these
occur often on glossy surfaces; for our VCM algorithm, these are highly glossy and perfectly specular (i.e. LS+E) unidirectional paths.
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