
EUROGRAPHICS 2013 / I. Navazo, P. Poulin
(Guest Editors)

Volume 32 (2013), Number 2

Adaptive Quantization Visibility Caching

Stefan Popov1 Iliyan Georgiev1,2 Philipp Slusallek1,2,3 Carsten Dachsbacher4

1Saarland University 2Intel VCI, Saarbrücken 3DFKI, Saarbrücken 4Karlsruhe Institute of Technology

Abstract
Ray tracing has become a viable alternative to rasterization for interactive applications and also forms the basis
of most global illumination methods. However, even today’s fastest ray-tracers offer only a tight budget of rays per
pixel per frame. Rendering performance can be improved by increasing this budget, or by developing methods that
use it more efficiently. In this paper we propose a global visibility caching algorithm that reduces the number of
shadow rays required for shading to a fraction of less than 2% in some cases. We quantize the visibility function’s
domain while ensuring a minimal degradation of the final image quality. To control the introduced error, we
adapt the quantization locally, accounting for variations in geometry, sampling densities on both endpoints of the
visibility queries, and the light signal itself. Compared to previous approaches for approximating visibility, e.g.
shadow mapping, our method has several advantages: (1) it allows caching of arbitrary visibility queries between
surface points and is thus applicable to all ray tracing based methods; (2) the approximation error is uniform
over the entire image and can be bounded by a user-specified parameter; (3) the cache is created on-the-fly and
does not waste any resources on queries that will never be used. We demonstrate the benefits of our method on
Whitted-style ray tracing combined with instant radiosity, as well as an integration with bidirectional path tracing.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture—I.3.7 [Computer Graphics]: Ray tracing—

1. Introduction

Ray tracing has been an intensive area of research in re-
cent years, and nowadays has a wide range of applica-
tions, from interactive to offline global illumination render-
ing. Consequently, researchers have addressed many differ-
ent challenges, such as constructing and traversing accel-
eration structures for ray casting (see [ND12] for a recent
overview), as well as improving Monte Carlo methods for
sampling light transport in virtual scenes. However, for both
interactive and offline rendering the main bottleneck when
using ray tracing is typically the number of rays that can be
cast within the time given to render a frame. This limitation
can be adressed in two ways: further improving acceleration
structures and traversal algorithms; or making use of the ray
budget in a smarter way, e.g. in spirit of bidirectional path
tracing [LW93] which reuses sub-paths for light transport
computation, or lightcuts [WFA∗05] which uses a single vis-
ibility query for a cluster of point lights.

The method we propose in this paper belongs to the lat-
ter class, however, it is orthogonal to specific light transport
algorithms: we present a novel visibility caching algorithm
for ray tracing that is based on quantization (or clustering) of
the path space. This quantization does not require any pre-

processing, as it is computed on-the-fly, and adapts to ge-
ometry, visibility sampling density, as well as to the lighting
on the surfaces, e.g. to capture shadow discontinuities. The
underlying idea is to replace the visibility between two ar-
bitrary points with the cached visibility between their quan-
tized locations (clusters). Any two points that quantize to the
same cluster reuse its visibility from the cache.

To evaluate our algorithm in practice, we have performed
tests on a variety of scenes under different lighting condi-
tions. The resulting renderings match the ray traced ones al-
most perfectly, but require only a small fraction of the vis-
ibility queries (below 2% in some cases). This results in a
speed up of up to 8× for the total rendering time. In sum-
mary, this paper makes the following contributions:

• We introduce a generic point-to-point binary visibility
caching algorithm which can be easily incorporated into
any ray tracing implementation.

• We describe an adaptive quantization scheme that avoids
self-shadowing and provides intuitive user-controlled
trade-off between performance and quality.

• We store all visibility information in a single global hash-
table with efficient storage and retrieval.

c© 2013 The Authors
This is the author’s version of the work. For personal use, not for redistribution. The
definitive version is avaliable at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

2 S. Popov, I. Georgiev, P. Slusallek, C. Dachsbacher / Adaptive Quantization Visibility Caching

2. Related Work

Visibility computation is a central problem in many com-
puter graphics algorithms where it is required to deter-
mine (in)visible surfaces for culling, to compute shading
and shadowing, and of course in global illumination (GI)
methods. Cohen-Or et al. [COCSD03] and Bittner and
Wonka [BW03] provide comprehensive overviews over re-
search in visibility. In general, ray tracing is the most flex-
ible way to determine the visibility between surface points,
however, many rendering techniques use rasterization to re-
solve visibility. Shadow mapping [Wil78] is probably the
most popular from-point visibility method, which has been
successively improved by researches over years; Scherzer
et al. [SWP11] provide a comprehensive survey. The main
drawback of this method is that a single shadow map only
encodes visibility between one point and many others, while
GI algorithms often require queries between arbitrary pairs
of points. For GI rendering, shadow mapping is typically
used together with instant radiosity [Kel97].

As we aim for a general method to speedup visibility in
global illumination computation, our focus is on ray tracing.
Cache-based visibility acceleration for ray tracing has been
done in various ways: Haines and Greenberg [HG86] prop-
agate the occluder found for a shadow ray to nearby rays,
which allows for faster identification of potential occluders,
however, shadow rays are always cast. Other caching-based
GI techniques store illumination instead of visibility, such
as the shader cache [TPWG02], the render cache [WDP99],
and irradiance caching [WRC88]. Similarly to our approach,
Dietrich and Slusallek [DS07] employ an adaptive spatial
cache, but also store illumination instead of visibility. All
aforementioned caching methods are applied to shading or
incident illumination, and are inappropriate for handling
high-frequency illumination, such as hard shadows.

Visibility computation has also been accelerated by quan-
tization before. For example, lightcuts [WFA∗05] builds a
tree hierarchy of virtual point light sources (VPLs), and the
illumination from entire light clusters is gathered with a sin-
gle shadow ray. Hašan et al. [HPB07] solve the many-light
problem by clustering VPLs based on their image contri-
bution, employing the GPU for visibility computation. Or-
thogonally to our approach, these methods aim to reduce the
number of visibility queries, not to accelerate them. For a
more comprehensive overview we refer to the recent survey
by Ritschel et al. [RDGK12].

3. Visibility Caching and Quantization Theory

In this section we introduce the underlying theory of our
method, and describe the principles of using visibility quan-
tization and caching for rendering.

We aim at accelerating visibility queries between two sur-
face points, which is a frequent computation in many ren-
dering algorithms. This binary visibility function V (X ,Y),

strictly speaking between two differential areas, appears in
the surface area form of the rendering equation. It has a value
of 1 if X and Y are mutually visible, and 0 otherwise. In some
cases, e.g. the integration of infinitely distant lights, a modi-
fied version of V (.) is used that operates on differential solid
angle. In this case, V (X ,ω) = 1 if a ray with origin X and
direction ω does not intersect any surface. Typically V (.)
is computed using ray casting, although for certain appli-
cations it is approximated, e.g. using shadow mapping (see
Sect. 2). In the following, we develop a theoretical frame-
work that will allow us to approximate V (.) and to control
the error introduced by the approximation.

3.1. Overview

In order to control the error caused by any visibility approx-
imation, we have to assess how a query V (X ,Y) influences
the final image, in case it returns the wrong result. As men-
tioned before, we focus on rendering algorithms based on
ray tracing, which build paths from the camera and/or the
light sources and then use the visibility function to connect
their vertices. This includes widely used algorithms such as
Whitted-style ray-tracing as well as all algorithms derived
from instant radiosity and (bidirectional) path tracing.

One important observation is that a query V (X ,Y) be-
tween two points might be used in two or more different
light transport paths, and a cached result thus can cause a
different error in the image. This has to be considered in an
adaptive caching scheme, and we express this dependence on
the actual path by writing a path visibility function V̄ (p̄e, p̄l),
where p̄e denotes an eye sub-path whose last vertex is con-
nected to the last vertex of a light sub-path p̄l .

We approximate visibility by quantizing the domain of
V̄ (.) which is the space of all paths that connect the cam-
era with the light sources. For this we introduce a mapping
K(p̄e, p̄l)→N and approximate the path visibility function:

V̄ (p̄e, p̄l)≈V c(K(p̄e, p̄l)). (1)

Each K(.) value j ∈N defines a quantization cluster (or sim-
ply cluster). For each cluster, we choose two representative
points (described in Sect. 3.4), and the cluster visibility func-
tion V c(j)→ {0,1} returns the binary visibility of the seg-
ment connecting the two endpoints.

Based on Eq. 1, we construct an algorithm for efficiently
computing the approximation V̄ (p̄e, p̄l), described in Alg. 1.
To this end, we can think of V c as an array of binary values
{0,1}, and we compute its elements on demand using ray
casting. Once computed, we store and reuse each value for
subsequent queries to the same cluster, i.e. we trace exactly
one ray per quantization cluster, and only if at least one path
from the cluster is used in the rendering process; we will
refer to this from now on as visibility caching.

The most crucial component obviously is the quantiza-
tion K(.) which we discuss in the remainder of this section.

S. Popov, I. Georgiev, P. Slusallek, C. Dachsbacher / Adaptive Quantization Visibility Caching 3

Algorithm 1 Compute approximate visibility Ṽ (p̄e, p̄l)

1: V c(j)← an array initialized to nil on every frame
2: j← K(p̄e, p̄l)
3: if V c(j) = nil then
4: p̄e(j), p̄l(j)← REPRESENTATIVEPATH(j)
5: X ← LASTVERTEX(p̄e(j))
6: Y ← LASTVERTEX(p̄l(j))
7: V c(j)←V (X ,Y) . Use ray-tracing for V (.)
8: end if
9: return V c(j)

First, we define K(.) through surface patches around the last
vertices of eye and light sub-paths (Sect. 3.2). Next, we re-
fine these patches by computing an appropriate shape based
on the position, normal, and sampling probability of the last
vertices of the sub-paths (Sect. 3.3). In Sect. 3.4 we show
how to choose their size w.r.t. the screen space error, and
how to pick cluster representatives where the visibility is ac-
tually evaluated. In Sect. 3.5 we show how to extend K(.)
to also support visibility queries for point and infinite light
sources. Lastly, we improve the approximation algorithm to
adapt to local variations in visibility (Sect. 3.6).

3.2. Defining the Quantization

Given a path p̄e p̄l , we define K(p̄e, p̄l) by taking two surface
patches A(p̄e) and A(p̄l), such that the last vertex X of p̄e lies
on A(p̄e) and the last vertex Y of p̄l lies on A(p̄l). As a con-
sequence, similar (nearby) paths, whose eye sub-paths end
within A(p̄e) and whose light sub-paths end within A(p̄l)
are quantized to the same visibility cluster (see Fig. 1).

To define A(p̄e) and A(p̄l), we first analyze how their
surface areas |A(p̄e)| and |A(p̄l)| affect the final image. In
the rendering algorithm (e.g. bidirectional path tracing), we
construct the sub-paths p̄e and p̄l using local path sam-
pling [Vea98, Sect. 8.2.2]. Thus, we can interpret the sam-
pling probabilities P(p̄e) and P(p̄l) of the paths as an es-
timate of how many similar paths end within the unit area
patch around X and Y , respectively. Assuming that the ren-
dering algorithm samples NP paths in total, we estimate the
number of paths NP(p̄e, p̄l) clustered together with p̄e p̄l as:

NP(p̄e, p̄l)≈ NP P(p̄e) |A(p̄e)| P(p̄l) |A(p̄l)|. (2)

This estimation assumes P(p̄e) and P(p̄l) are constant within
A(p̄e) and A(p̄l). Thus, we use P(p̄e)|A(p̄e)|P(p̄l)|A(p̄l)| as
the probability of a path to go through the two patches. In
the case of Whitted-style ray tracing, we could also com-
pute the first order derivatives of P(p̄e) through ray differen-
tials [Ige99], which yields a better estimate for NP(p̄e, p̄l).

The previous equation provides the means to control the
quantization error. Choosing all A(p̄e) and A(p̄l) such that

|A(p̄e)||A(p̄l)|=
(CE)

2

P(p̄e)P(p̄l)NP
, (3)

Figure 1: Similar paths where the last vertex of the light
sub-path lies within a region A(p̄l) and the last vertex of
the eye sub-path lies within A(p̄e) are grouped together and
share the same visibility query.

we can expect that each cluster contains (CE)
2 paths on av-

erage. That is, assuming that paths in a cluster are coherent
(similar), and thus have similar unoccluded contribution to
the final image, we can expect that the error introduced by
the quantization will change the final image’s energy by at
most (CE)

2 times. This, however, is the worst case scenario,
when the visibility for the representative path is different
from the visibility of all other paths in each cluster.

The constant CE is the most important parameter of our
algorithm. It is specified by the user and controls the trade-
off between quality and performance. Based on this constant,
we derive two alternatives for computing K(.) in Sect. 3.4.

3.3. Cluster Shapes

The next step is the construction of K(.), which maps a pair
of surface points to a unique cluster. Since we want to avoid
the necessity of a surface parametrization, we compute this
mapping on-the-fly. For convenience, we will assume that
K(.) does not return a single cluster ID, but a tuple of inte-
gers representing the quantized surface information.

To this end, we embed the scene’s surface into a set of vir-
tual multi-resolution, overlapping, and differently oriented
voxel grids (see Fig. 2). These grids are never allocated and
are only used to describe the quantization. For a vertex X
(on an eye or light path) with normal N(X), we first com-
pute a quantized direction dz (where CN is a user-specified
parameter, see below):

ω
q =

⌊
N(X)+1

2
CN

⌋
, dz =

2ω
q

CN
−1. (4)

This quantized direction is used to define the orientation of a
3D grid which contains the entire scene, and whose Z axis is
parallel to dz. The orientation of its X and Y axes is not im-
portant, as long as they are chosen consistently. The grid res-
olution is R(p̄)×R(p̄)×CZR(p̄), where CZ is again a user-
parameter and R(p̄) is computed from the error threshold
(see Sect. 3.4). In total, K(p̄e, p̄l) returns a tuple of 14 inte-
gers: 3 for the orientation index of X , 3 for the coordinates
of the grid voxel containing X , and 1 for the grid resolution
R(p̄e); the 7 integers for Y chosen analogously as for X .

4 S. Popov, I. Georgiev, P. Slusallek, C. Dachsbacher / Adaptive Quantization Visibility Caching

Figure 2: Visibility domain quantization: X ′ and X ′′ reside
on surfaces with similar orientation, and are quantized to the
same grid and grid cell. The red grid has a finer resolution
and represents surfaces with a different orientation.

Discussion. The parameters CN and CZ provide a trade-off
between how well the quantization adapts to the surface and
the expected acceleration. In all our results we used CN = 8
and CZ = 8, which we found best by experimenting with val-
ues in the range [2,32]. We also tried making K(.) cheaper to
compute by using the same orientation for all grids and more
uniform directional quantization [ED08]. In the first case,
we saw no performance improvement but quality degrada-
tion due to light leaks. In the latter, we found no difference
in the image quality nor rendering performance.

3.4. Grid Resolution and Cluster Representatives

Once we have defined K(.), the next step is to choose the grid
resolution R(p̄) and the cluster representatives. For R(p̄), we
first observe that the area of a surface patch around X is

|A(p̄e)| ≈
(

2BR

R(p̄e)

)2

, (5)

where BR is the radius of the bounding sphere around the
scene; |A(p̄l)| is defined analogously using R(p̄l). Plugging
Eq. 5 into Eq. 3, we obtain one possible way to determine
the grid resolutions:

R(p̄e) = R(p̄l) = 2BR

(
P(p̄e)P(p̄l)NP

(CE)2

)−4

. (6)

In principle, this is the optimal way to determine the grid
resolution, as it produces the smallest patches around both
end points and thus increases the chances that our uniform
visibility assumption holds (Sect. 3.2). We use Eq. 6 when
rendering with bidirectional path tracing.

For Whitted-style ray-tracing, we derive an alternative to
determine the resolutions (still based on Eqs. 3 and 5):

R(p̄e) = 2BR

√
P(p̄e)NS

(CE)2 , R(p̄l) = 2BR

√
P(p̄l)NP

NS
, (7)

where NS is the number of eye paths (i.e. NP/NS is the av-
erage number of illumination samples per eye path). The
advantage of this approach is that CE can be interpreted in
screen space: the error introduced by any cluster K(.) is ex-
pected to be within a screen region of size CE ×CE .

Note that R(.) contains the probabilities of constructing
the paths p̄e and p̄l . As R(.) affects the quantization function
K(.), paths sharing a single segment between two points X
and Y might still be quantized differently. This is important,
as their contributions to the image, and thus the potential
error due to quantization and caching, can be different.

To store the values of R(.) (normalized w.r.t. to the scene
scale) in the integer tuples returned by K(.), we quantize
them using an exponential curve, to converse precision:

R←

⌊
C

⌊
logCR

R+ 0.5
⌋

R

⌋
, (8)

where the constant CR controls the quantization. We use
CR = 1.2 in all our scenes; again this value has been experi-
mentally derived by testing in the range CR ∈ [1.1, 2.5].

Lastly, we have to choose the cluster representative end-
points. As the only available geometric information are the
two query vertices (Alg. 1, line 7), we simply choose this
pair as the representatives. This is the optimal choice for
the first path quantized to this cluster, and this choice also
avoids the risk of self-shadowing. But it has another impor-
tant consequence: the cluster representatives now depend on
the processing order of the paths. We discuss how to avoid
this correlation in Sect. 4.3.

3.5. Point and Directional Light Sources

To handle point, directional, and environment lights with
visibility caching, we need special definitions of K(.) for
these light source types. A point light is represented by a
location Y in space, while a directional light source is de-
fined by a direction ω. For these lights, K(p̄e,Y) (respec-
tively K(p̄e,ω)) returns a tuple of 10 integers: again 7 val-
ues are computed from p̄e (Sect. 3.3), where we use Eq. 7
to determine the grid resolution. The three remaining com-
ponents uniquely represent Y (resp. ω) and are obtained by
bitwise reinterpreting the components of Y or ω as integers.

For environment maps, a light path p̄l represents a differ-
ential solid angle ω chosen with probability P(ω). To com-
pute K(p̄e,ω), following the argumentation from Sect. 3.2,
we define A(p̄l) as a patch on the unit sphere (i.e. the solid
angle itself). We use octahedron mapping [ED08] to map
solid angles onto the unit square. We then partition the lat-
ter using a regular 2D grid with a resolution of R(ω)×R(ω)
dependent on P(ω). Finally, we choose the patch A(p̄l) to be
the grid cell that contains the mapped point of ω. R(p̄e) is
computed using Eq. 7 and there also follows that

R(ω) =

√
P(ω)NP

4πNS
, (9)

taking into account the unit sphere’s surface area. Note that
we cannot use Eq. 6 in this case, as it does not guarantee
that A(ω) < 4π. R(ω) is quantized using the same value for
CR as reported in Sect. 3.4. The result of K(p̄e,ω) then again

S. Popov, I. Georgiev, P. Slusallek, C. Dachsbacher / Adaptive Quantization Visibility Caching 5

Figure 3: An image rendered with (left) and without (right)
adaptive refinement. Without refinement jagged shadow
edges become visible under strong directional lighting.

becomes a tuple of 10 integers, the first 7 of which computed
from p̄e as in Sect. 3.3. The next two are the coordinates of
the chosen grid cell, followed by R(ω).

To summarize, we compute K(.) depending on the seman-
tic of its second argument: (1) point, (2) direction, (3) differ-
ential surface area, or (4) differential solid angle. The range
of values can overlap even though the parameter domains are
disjoint. To correctly store visibility information (Alg. 1, line
7), we prepend a two-bit index that specifies the semantics.

3.6. Adaptive Refinement

The piece-wise constant approximation described above as-
sumes that all paths passing through the same cluster have
the same visibility. This obviously does not always hold in
practice, in particular for paths in a cluster that pass near the
edge of an occluder. In this case, our approximation intro-
duces an error, which is mostly visible in the form of jagged
shadow edges on the screen (see Fig. 3 right).

To alleviate this problem, we improve the quantization
function to detect and to adapt to such non-uniform condi-
tions. Whenever we resolve visibility using a cluster from
the cache, we also examine the visibility of its neighboring
clusters: If the paths in a cluster pass near the edge of a large
occluder, we can expect that some of the surrounding clus-
ters will report different visibility. In this case, we refine the
approximation by reducing CE for the current query and re-
curse. To locate neighboring clusters, we exploit the 3D grid
cluster structure: by adding +1/-1 to the appropriate quan-
tized locations in the tuple K(p̄e, p̄l) we obtain the indices
of each of the 64 neighbors (8 around X × 8 around Y). This
assumes a locally flat surface and that nearby clusters use the
same grid resolution, but proved robust in our experiments.

Adaptive refinement makes most sense when the quanti-
zation clusters span multiple screen samples. In case of pixel
super-sampling, the jagginess from the non-adaptive approx-
imation is mostly invisible, as long as C2

E is smaller than the
number of samples per pixel. This is why we only use adap-
tive refinement when generating the eye paths with Whitted-
style ray tracing. For efficiency reasons, in our implemen-
tation (Alg. 2) we only explore the 4 neighbors around X .
Because of the way we chose R(p̄e) in Eq. 7 this roughly
corresponds to exploring the CE ×CE squares above, under,
left, and right of the screen area of our cluster. We reduce
CE by a factor of 2× at each recursion step, which roughly

Algorithm 2 Compute Ṽ (p̄e, p̄l) with adaptive refinement
1: V c(j)← an array initialized to nil on every frame
2: for d = 0→CMSR−1 do
3: j← K(p̄e, p̄l ,CE/2d) . j is global variable
4: if V c(j) = nil then
5: (X ,Y)← LASTVERTICES (p̄e(j), p̄l(j))
6: V c(j)←V (X , Y)
7: break
8: end if
9: a← true . See if all neighbours agree

10: for offset ∈ {(1,0),(0,1),(−1,0),(0,−1)} do
11: jn← j+(0,0,0,offset,0, . . .)
12: a← a∧ (V c(jn) = nil∨V c(jn) =V c(j))
13: end for
14: if a then break
15: end for
16: return V c(j)

corresponds to halving each screen dimension of our cluster.
The refinement depth is limited by a user specified parame-
ter CMSR which we set to log2 CE by default. Note that if no
visibility information about the neighbors is present, we do
not trace rays, as we have no knowledge about the surfaces
in these regions. Thus, the adaptive refinement efficiency is
sensitive to the path sampling order (discussed in Sect. 4.3).

4. Rendering with Visibility Caching

In this section we discuss the use of visibility caching in ren-
dering algorithms. We discuss important practical issues, in-
cluding peculiarities in CPU and GPU implementations and
the renderers that we use to demonstrate them.

4.1. Cache Storage

Recall from Sect. 3.3 that V c is defined over a 15-dimen-
sional domain: the 14 integers of K(.) and the prepended
semantic index. Thus, it cannot be easily stored in an array.
For this reason, and to exploit its sparseness, we store it in a
hash map (similarly to [DS07]). To index into the hash map,
we compute a 32-bit key κ(j) from j = K(.) (defined below)
and take its modulo with the hash map size CT , known as the
division method. We do not resolve collisions, and simply
overwrite the data instead. While this can lead to redundant
cluster visibility computations, it has the advantage of a fixed
storage size. To avoid storing the whole tuples j, a 31-bit
message digest c(j), which can be seen as a checksum, is
prepended to the 1-bit “payload”, the visibility V c(j). The
hash map then becomes a 32-bit integer array with size CT .

We use two approaches to compute κ(j) and c(j). The
first one uses two linear congruential generators C1 and C2
[PTVF07, Section 7.1], and takes κ(j) = C1(κ16(j)) and

6 S. Popov, I. Georgiev, P. Slusallek, C. Dachsbacher / Adaptive Quantization Visibility Caching

c(j) =C2(c16(j)) from the recurrence relations

κn+1(j) =C1(κn(j)) xor j(n)

cn+1(j) =C2(cn(j))+ j(n).
(10)

The second approach computes a 64-bit digest from d(j) and
takes the upper 32 bits for κ(j) and the lower 31 bits for c(j).
It combines a linear congruential generator C with a xor-shift
generator A, using d(j) = A(C(d16(j))) with the recurrence
relation dn+1(j) = A(C(dn(j))) xor j(n). The first approach
generates more collisions than the second one, but is cheaper
to compute and was faster on the CPU due to its large caches.
On the GPU, where the cheaper arithmetic operations make
collisions more expensive, the second approach was faster.

4.2. Rendering Algorithms

We integrated our visibility caching into two different ren-
derers, one based on bidirectional path-tracing (BPT), and
the other one on instant radiosity. For BPT, we use quantiza-
tion without adaptive refinement, and cache visibility for the
connecting segments of all eye and light sub-paths.

The second renderer combines Whitted-style eye path
tracing, instant radiosity and Monte Carlo direct illumination
sampling. We first store eye paths in deep deferred buffers,
then generate VPLs, resampled to a user-defined number as
in [SP06], and finally shade the eye samples using adaptive
refinement to avoid artifacts from clusters spanning multi-
ple pixels. We handle direct lighting independently for each
pixel, and also use a multiple importance sampling combi-
nation of BRDF and environment power sampling [Vea98].

4.3. Pixel Enumeration Order

When using Whitted-style ray tracing, scanline pixel enu-
meration can cause the approximation error to be more ap-
parent, due to the correlation between the cluster represen-
tative assignment and the eye sample processing order. A
similar problem also occurs in irradiance caching [WRC88],
and in our case it can result in jaggy shadow edges and shad-
ows shifted to the bottom-right, as seen in Fig. 4 left. The
scanline processing order also reduces the effectiveness of
our adaptive refinement, as the upper and left neighbors of a
cluster (from a camera perspective) will be in the cache most
of the time, while the bottom and right ones will not.

To avoid these unwanted correlations, we traverse the pix-
els in an order both coherent and irregular. Besides for im-
proved quality, this is also important with regard to the mas-
sive parallelism of GPUs (as discussed below). To this end,
we enumerate all pixels in the order they would be visited by
a 2D Halton sequence [Hal64] with bases 2 and 3. We then
exploit the property of this sequence that any continuous
sub-sequence will cover the whole domain with low discrep-
ancy: we partition the generated order into segments, choos-
ing 0, CPI, CPICPG, CPIC2

PG, etc. as boundaries, and sort the
elements within each segment using Morton codes [Mor66].

Figure 4: The effect of a scan line processing order (left
image) on the approximation error for non-adaptive quan-
tization. The shadows from the cube appear shifted towards
the bottom right. The right image uses random order, and the
middle one is ground-truth.

By this the screen is progressively covered by the segments,
each with a density C2

PG times higher at each iteration, and
the pixels within one segment are visited in a coherent order.
Experimentally, we have found CPI = T/(CE)

2 (where T is
the number of pixels on the screen) and CPG = 3.7 to work
best across our test scenes.

4.4. Implementation Details

Our bidirectional path tracer runs on the CPU only, while we
have both CPU and GPU versions of the second renderer that
combines Whitted-style ray tracing with instant radiosity.

Thread-safety and race conditions. Our implementation of
the visibility cache is thread safe, i.e. even if two or more
threads work on the same element of V c, the final result
will still be correct, as these elements are simple 32-bit in-
tegers. Such non-critical race conditions can, however, neg-
atively impact performance. Fortunately, the pixel process-
ing order from Sect. 4.3 helps alleviate this problem: when
two threads process pixels close enough to each other to po-
tentially cause a conflict, then many of the surrounding pix-
els will have been already visited. Thus, visibility will most
likely be resolved from the cache, avoiding race conditions.

CPU implementation. On CPUs, which are characterized
by moderate MIMD parallelism and large per-core caches,
we parallelize rendering by dividing the screen into tiles of
32× 32 pixels. For the Whitted-style renderer, we assign a
separate visibility cache to each thread. We keep its size low
at 4MB, since the number of different cache requests inside
one tile is low, and this size also ensures that the visibil-
ity cache mainly stays in the CPU caches. For the adaptive
refinement we compute K(j), c(j) and κ(j) for 4 levels at
once leveraging SSE instructions. For the bidirectional path
tracer, we use one large shared cache of 1GB.

GPU implementation. On the GPU, we use the ray tracing
kernels of Aila and Laine [AL09]. We assign each thread
to one pixel and schedule the work using persistent threads.
We use a global cache of 256MB. In all our scenes, a larger
cache increased the rendering performance only slightly, e.g.
a 1GB cache resulted in ≈5% faster rendering times.

There is one very important aspect in the efficiency of the
GPU implementation: a 32-wide SIMD warp always takes as
long as tracing 32 rays, even if only one of its threads really

S. Popov, I. Georgiev, P. Slusallek, C. Dachsbacher / Adaptive Quantization Visibility Caching 7

ref

ref

ref

ref

ref

ref

ref

ref

APARTMENT
16 AA, reference
597s

SAN MIGUEL
9 AA, reference
734s

16

1616

16

SAN MIGUEL
9 AA, cache
115s, CE = 36

CONFERENCE
no AA, reference

1.3s

BIDIR. PATH TRACING
750 paths/pixel, reference

BIDIR. PATH TRACING

750 paths/pixel, cache
CE = 12, 1/6 shadow rays

CONFERENCE
no AA, cache
0.6s, CE = 18

APARTMENT
16 AA, cache
597s, CE = 42

Figure 5: We compare reference images computed with exact visibility (above the diagonal) to images rendered with our visi-
bility caching (below the diagonal). The total render times are given in seconds, the difference images show the 16× amplified
luminance error. The two close-ups for each scene highlight the visual differences. The rendering setup is described in Sect. 5.

traces a ray. In visibility caching, it often happens that only
a few threads cast rays and the rest draw results from the
cache. We solve the problem by using a mechanism to post-
pone computation: every time we are about to shoot a ray, we
count how many other threads in the warp want to trace rays
as well. If the number is below a threshold CW , we save the
local state of each thread in a small per-warp queue with 64
entries and do not trace rays immediately; all other threads in
the warp use the cached results and proceed with connecting
the eye and light paths. Whenever the number of elements in
the queue exceeds 32, we finish the postponed work for its
first 32 entries by shooting the rays, filling V c, and connect-
ing the paths. We found that high thresholds provide the best
performance (we use CW = 31), as the overhead of postpon-
ing work is small and tracing with even one thread less than
the warp measurably increases rendering time.

5. Results

In this section we benchmark the practical performance of
our visibility caching algorithm. We render several scenes
with the renderers described in Sect. 4.2 and compare them
to exact visibility reference images. The focus of our analy-
sis is on rendering performance and quality degradation.

Scenes. We show results for the following scenes (Fig. 5, 6):
• APARTMENT consists of ≈750K triangles and is illumi-

nated by 24 omni-directional point lights, 1024 VPLs, and
256 environment map samples.

• APARTMENT DELTA is the same scene as above, but illu-
minated by 24 omni-directional point lights and 1 direc-
tional light source.

• CONFERENCE consists of ≈280K triangles and is illumi-
nated by overhead area lights with 64 samples.

• SAN MIGUEL is our largest scene, consisting of ≈10M
triangles; illumination is computed with 256 environment
samples and 1024 VPLs.

• HAIRBALL has fine geometry with ≈3M triangles, and is
illuminated by 64 environment samples and 256 VPLs.

We rendered all scenes with and without anti-aliasing (AA)
on the GPU, and also APARTMENT and APARTMENT

DELTA without AA on the CPU. AA employs 16× super-
sampling, except for 9× on SAN MIGUEL and HAIRBALL

due to insufficient GPU memory for both the large model
and the deferred shading buffers. We perform all our mea-
surements on an Intel Core i7 2600K CPU with an NVIDIA
Quadro 6000 GPU at resolution 1280× 800 (and 10242

for HAIRBALL). We also achieved an absolute performance
speedup of 2× over the Quadro on a GTX 680 GPU, but not
all rendering setups could fit into its smaller memory. We
therefore report results from the former GPU only.

Range of CE. We rendered each scene with different values
for CE to assess the influence and choice of this parame-
ter. Super-sampling allows for a wider range for CE , as it
increases the image plane density, effectively decreasing the
area of influence of any given cluster on the screen. For point

8 S. Popov, I. Georgiev, P. Slusallek, C. Dachsbacher / Adaptive Quantization Visibility Caching

ref

ref

HAIRBALL
9 AA, reference
193s

HAIRBALL
9 AA, cache
67s, CE = 28

16

Figure 6: The fine geometry of HAIRBALL reduces the
achieved ray reduction. Nevertheless, we achieve rendering
acceleration of 3× due to the high ray intersection cost.

and directional light illumination (on APARTMENT DELTA),
we choose CE ∈ [4,36] and CE ∈ [4,18] for images with and
without anti-aliasing respectively. Since VPL, environment
map, and area light illumination is generally smoother, we
use CE ∈ [10,64] and CE ∈ [4,24] respectively. For APART-
MENT we fix CE = 4 for the omni-directional lights, and vary
CE for other light sources. This improves image quality with-
out a measurable performance penalty.

Quality metrics. To assess rendering quality, we use the
perception driven metric PREDICTED QMOS, proposed by
Mantiuk et al. [MKRH11]. It measures the quality of a “dis-
torted” picture compared to a given reference as mean opin-
ion score. We also measure the change of energy LˆINF, as
the ratio of the sum of absolute differences of the two im-
ages’ pixels and the total energy of the reference image.

Performance metrics. To assess the performance benefit of
using visibility caching, we analyze (1) the shadow ray re-
duction (named RAY REDUCTION in the performance charts
in Fig. 7), and (2) the total frame rendering time (named
SPEEDUP). The first can be seen as an upper bound for the
speedup we can expect, while the second shows the actually
achieved speedup with our implementation. Both are given
relative to a reference implementation using exact visibility.
The measured frame times include all phases of the render-
ing algorithm, i.e. eye path and VPL generation (which typ-
ically take little time compared to shading).

Cache performance can also be derived from Fig. 7 as
(1−HitRatio) = MissRatio = 1/(RayReduction+1). Note
that cache misses occur also due to collisions, but their
frequency can only be measured accurately in the single-
threaded case, where they were well below a few percent
for all scenes. With multiple threads the measurement itself
changes the cache access pattern and thus the collision rates.

Relative performance results for the different values of
CE are also summarized in Fig. 7. Absolute frame times are
given in Fig. 5 and 6, where we compare reference images

to results obtained with a value for CE that (we think) yields
the optimal trade-off between quality and performance. For
reasons explained above, we present results obtained with
anti-aliasing separately in Fig. 7. Our algorithm achieves sig-
nificant shadow ray reduction, up to 50×, while mostly pre-
serving the rendered image quality (QMOS remains high,
above 77%). Note that, due to numerical precision issues
in the original authors’ implementation used, QMOS cannot
exceed 93.4%, even when comparing an image to itself.

5.1. Quality Degradation

Our caching method substitutes path visibility with cluster
visibility. This approximates the energy transferred to the
screen by all paths p̄ quantized into a given cluster:

I c = ∑V (X ,Y) f (p̄) ≈ V c
∑ f (p̄), (11)

where f (p̄) is the unoccluded contribution of p̄, and X
and Y are the path connection points. The cluster visibility
V c ∈ {0,1} is a binary random variable, whose value is de-
termined by the cluster representative. The probability that
V c = 1 is equal to the average path visibility:

Pr(V c= 1) = V c
avg =

∫
Al

∫
Ae

V (X ,Y) dXdY

|Al ||Ae|
, (12)

with Ae and Al being the patches defining the cluster, where
for simplicity we have assumed that all paths in the cluster
have the same sampling density. Clusters with V c

avg < 0.5
will on average reduce the brightness of the affected screen
regions, while the rest will increase it. The CONFERENCE

zoom-ins in Fig. 5 show examples of the former case. The
blue zoom-ins of the HAIRBALL in Fig. 6 demonstrate the
latter case. When a single cluster contributes the entire illu-
mination of each pixel, cluster shapes become visible, result-
ing in jaggies (Fig. 8). Note that visibility caching produces
correct results for clusters whose two patches are mutually
fully (un)occluded, which is often the case in our test scenes.

5.2. Speedup

The total rendering speedup is expectedly smaller than the
shadow ray reduction: besides visibility, the frame time in-
cludes shading which remains unchanged. Moreover, cache
lookups also incur some cost, and the actual shadow rays
traced are much less coherent and thus more expensive. On
the other hand, the speedup we achieve is close to optimal
on most scenes. The ratio of shading to total frame time on
the GPU for the reference solution is approximately 12 for
APARTMENT, 18 for APARTMENT DELTA, 5 for CONFER-
ENCE, 37 for SAN MIGUEL, and 26 for HAIRBALL. Thus,
any other algorithm cannot be faster than ours by more than
2.5×, 3.4×, 2.1×, 4.7×, and 6.7× respectively, even if it
completely eliminates the visibility query cost.

As a rule of thumb, the higher the ray tracing cost, the
more benefit can be expected from caching. We did not see

S. Popov, I. Georgiev, P. Slusallek, C. Dachsbacher / Adaptive Quantization Visibility Caching 9

GPU CONFERENCECPU APARTMENT DELTA

GPU APARTMENT DELTA

CPU APARTMENT

GPU APARTMENT

GPU HAIRBALL

GPU SAN MIGUEL

1.0x
2.0x
3.0x
4.0x
5.0x
6.0x

3 8 13 18 23

Speedup

70%
80%
90%

100%

3 8 13 18 23

QMOS

1x
5x
9x

13x
17x

3 8 13 18 23

Ray Reduction

0%

10%

20%

3 8 13 18 23

L^Inf

1.0x
2.5x
4.0x
5.5x
7.0x
8.5x

3 15 27 39 51 63

AA Speedup

70%
80%
90%

100%

3 15 27 39 51 63

AA QMOS

0x
15x
30x
45x
60x

3 15 27 39 51 63

AA Ray Reduction

0%

10%

20%

3 15 27 39 51 63

AA L^Inf

Figure 7: Performance characteristics of rendering with visibility caching as a function of CE (“AA” denotes anti-aliasing).

any speedup on simple scenes (e.g. Cornell box), while the
large unoccluded regions in CONFERENCE result in low ray
cost and low speedup (Fig. 7). The more complex occlusion
in APARTMENT results in higher speedup. SAN MIGUEL ex-
hibits the largest speedup, due to the especially high cost of
shadow rays that pass through the fine geometry of vegeta-
tion models. The ray cost is very high in HAIRBALL as well,
but the high frequency geometry around the eye samples lim-
its the size of the cluster patches and thus the ray reduction;
the speedup is therefore almost identical to the ray reduction.

The higher relative shading cost on the CPU leads to a
lower speedup than on the GPU. In APARTMENT shading
takes 32% of the CPU frame time, i.e. we cannot expect to
accelerate rendering by more than 3× in this case.

The top-right scene in Fig. 5 has been rendered with bidi-
rectional path tracing using visibility caching, without adap-
tive refinement. Since shadow ray casting in BPT takes only
a small fraction of the frame time, we use this scene to as-
sess the applicability of visibility caching to path tracing al-
gorithms. We used CE = 12, which reduced the shadow ray
count by ≈ 6×. Similarly to the other results, quantization
errors are mostly visible around small-scale shadow regions.

5.3. Interactive Performance

Although our method is meant mainly for interactive pre-
view rendering (several seconds per frame), we have showed
images with longer computation times until now. We did this
to faithfully show the artifacts of visibility caching, with-
out distractions due to noisy undersampled illumination. By
lowering the sampling settings, we have achieved interactive
walkthroughs in the APARTMENT and SAN MIGUEL scenes
at approx. 2 FPS with acceptable image quality, as demon-
strated in the accompanying video. Interactive performance
of our method can also be observed on APARTMENT DELTA

(3 FPS) and CONFERENCE (1.5 FPS).

A typical disadvantage associated with any form of sub-
sampling is temporal flickering. In our case, adaptive refine-

ment almost entirely eliminates it. High-frequency temporal
noise is visible mostly on hard shadows with higher than
average values for CE and sometimes on soft shadows for
high values of CE , as we show in the accompanying video.
In any case, low frequency flickering due to wrong visibility
in large surface regions is unlikely to occur, since artifacts
are smaller than CE ×CE pixels on the screen.

5.4. Comparison to Shadow Maps

Visibility caching suggests a comparison to shadow map-
ping. Fig. 8 provides a comparison to plain shadow mapping
on APARTMENT DELTA for varying CE values and shadow
map resolutions. The quality achieved by hardware shadow
mapping, even at resolution 6000× 6000, is inferior to vis-
ibility caching with moderate CE values. Surprisingly, on
the same hardware, shadow mapping was slower than our
method. At 1024× 1024, the lowest resolution with accept-
able quality, it performed 2× slower than our algorithm with
CE = 14. Expectedly, shadow mapping performs better for
point light sources. Still, visibility caching remains superior
for close-range viewpoints, thanks to its automatic screen-
space error control.

We only compare to plain GPU shadow mapping, as the
presence of refractive objects prevents the use of warping
and partitioning techniques [SWP11], while focusing and
culling [BMSW11] have to be modified to compute the
bounds of the deferred eye samples. Furthermore, focusing
and culling make little sense in our test scene, since the eye
samples span almost the complete volume of the scene.

6. Conclusion and Future Work

We presented a novel visibility caching algorithm for ray
tracing that reduces the number of shadow rays by up to
50×, and accelerates global illumination rendering by only
slightly affecting image quality. Our algorithm is scalable
w.r.t. scene complexity and its effectiveness increases with

10 S. Popov, I. Georgiev, P. Slusallek, C. Dachsbacher / Adaptive Quantization Visibility Caching

Reference
1 sec

Reference
1 sec

CE = 6
0.4 sec

CE = 6
0.4 sec

CE = 14
0.25 sec

1K 1K
0.5 sec

2K 2K
1.1 sec

6K 6K
7.3 sec

1K 1K
0.5 sec

Figure 8: Our visibility caching (columns 2, 3) compared to shadow mapping (columns 4-6) on APARTMENT DELTA. Regions
with large errors are magnified. The bottom row of zoom-ins is from a different view point indicated by the orange arrow.

larger and more complex scenes. The method supports ar-
bitrary visibility queries and naturally handles illumination
from point and area lights as well as environment maps.

As future work, we plan to incorporate our method into
other rendering algorithms. Lightcuts [WFA∗05] seems par-
ticularly interesting, as nearby pixels typically share many
VPLs and thus exhibit great potential for accelerating the
rendering. We would also like to extend our algorithm
to support participating media, where the main challenge
would be the adaptive refinement algorithm, as it is no longer
easy to compare the visibility of neighboring grid cells.

References
[AL09] AILA T., LAINE S.: Understanding the efficiency of ray

traversal on GPUs. In Proc. High Performance Graphics (2009),
pp. 145–149. 6

[BMSW11] BITTNER J., MATTAUSCH O., SILVENNOINEN A.,
WIMMER M.: Shadow caster culling for efficient shadow map-
ping. In Proc. I3D (2011), ACM, pp. 81–88. 9

[BW03] BITTNER J., WONKA P.: Visibility in computer graph-
ics. Environment and Planning B: Planning and Design 30, 5
(2003), 729–756. 2

[COCSD03] COHEN-OR D., CHRYSANTHOU Y. L., SILVA
C. T., DURAND F.: A survey of visibility for walkthrough ap-
plications. IEEE Transactions on Visualization and Computer
Graphics 09, 3 (2003), 412–431. 2

[DS07] DIETRICH A., SLUSALLEK P.: Adaptive spatial sample
caching. In Proc. IEEE/EG Symposium on Interactive Ray Trac-
ing 2007 (September 2007), pp. 141–147. 2, 5

[ED08] ENGELHARDT T., DACHSBACHER C.: Octahedron envi-
ronment maps. In Proc. VMV (2008), pp. 383–388. 4

[Hal64] HALTON J. H.: Algorithm 247: Radical-inverse quasi-
random point sequence. Communications of ACM 7 (1964). 6

[HG86] HAINES E., GREENBERG D.: The light buffer: A
shadow-testing accelerator. IEEE Computer Graphics and Ap-
plications 6, 9 (1986), 6 –16. 2

[HPB07] HAŠAN M., PELLACINI F., BALA K.: Matrix row-
column sampling for the many-light problem. ACM Transactions
on Graphics (Proc. SIGGRAPH) 26, 3 (2007). 2

[Ige99] IGEHY H.: Tracing ray differentials. In Proc. SIG-
GRAPH’99 (1999), pp. 179–186. 3

[Kel97] KELLER A.: Instant radiosity. In SIGGRAPH ’97 (1997),
pp. 49–56. 2

[LW93] LAFORTUNE E. P., WILLEMS Y. D.: Bi-directional path
tracing. In Proc. SIGGRAPH’93 (1993), pp. 145–153. 1

[MKRH11] MANTIUK R., KIM K. J., REMPEL A. G., HEI-
DRICH W.: HDR-VDP-2: a calibrated visual metric for visibility
and quality predictions in all luminance conditions. ACM Trans-
actions on Graphics (Proc. SIGGRAPH) 30, 4 (2011). 8

[Mor66] MORTON G. M.: A computer oriented geodetic data
base and a new technique in file sequencing. Tech. rep., IBM
Ltd., 1966. 6

[ND12] NOVÁK J., DACHSBACHER C.: Rasterized bounding vol-
ume hierarchies. Comptuter Graphics Forum 31, 2 (2012). 1

[PTVF07] PRESS W. H., TEUKOLSKY S. A., VETTERLING
W. T., FLANNERY B. P.: Numerical Recipes 3rd Edition, 3 ed.
Cambridge University Press, Sept. 2007. 5

[RDGK12] RITSCHEL T., DACHSBACHER C., GROSCH T.,
KAUTZ J.: The state of the art in interactive global illumination.
Comptuter Graphics Forum 31, 1 (2012), 160–188. 2

[SP06] SEGOVIA B., PÉROCHE J.-C. I. B.: Bidirectional instant
radiosity. In Proc. EGSR (2006). 6

[SWP11] SCHERZER D., WIMMER M., PURGATHOFER W.: A
survey of real-time hard shadow mapping methods. Computer
Graphics Forum 30, 1 (2011), 169–186. 2, 9

[TPWG02] TOLE P., PELLACINI F., WALTER B., GREENBERG
D. P.: Interactive global illumination in dynamic scenes. ACM
Transactions on Graphics (Proc. SIGGRAPH) 21, 3 (2002). 2

[Vea98] VEACH E.: Robust monte carlo methods for light trans-
port simulation. PhD thesis, Stanford University, Stanford, CA,
USA, 1998. Adviser-Guibas, Leonidas J. 3, 6

[WDP99] WALTER B., DRETTAKIS G., PARKER S.: Interactive
rendering using the render cache. In Proc. Eurographics Work-
shop on Rendering (1999), pp. 235–246. 2

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA
K., DONIKIAN M., GREENBERG D. P.: Lightcuts: a scalable
approach to illumination. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH) 24, 3 (2005), 1098–1107. 1, 2, 10

[Wil78] WILLIAMS L.: Casting curved shadows on curved sur-
faces. Computer Graphics (Proc. SIGGRAPH) 12, 3 (1978). 2

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A ray
tracing solution for diffuse interreflection. Computer Graphics
(Proc. SIGGRAPH) 22, 4 (1988), 85–92. 2, 6

