Monte Carlo methods for volumetric light transport simulation STAR at EG 2018 Advanced methods and acceleration data structures

Johannes Hanika Lehrstuhl für Computergrafik Karlsruhe Institute of Technology

contents

- selection of advanced methods:
 - Dwivedi sampling / zero variance random walks
 - spectral tracking
- acceleration data structures
 - for regular tracking
 - inside these: null collision based
- emissive media

- regular path tracing random walk tends to get lost inside a volume bounded by a shape

random walk biased to exit **bounded volume** as quickly as possible assumes constant illumination from the outside [Kd14]

- assume homogeneous slab with isotropic phase function
- approximate closed-form solution of transport using this simplified setting known as **zero-variance theory** (term may be a bit bold)

- random walk biased towards light source aims to exit towards light [MHD16]

- random walk biased towards light source aims to exit towards light [MHD16]

achieved by **biasing the PDF** to sample direction and distance estimator remains unbiased!

spectral tracking

- another problem with skin: chromatic media
 - ho collision coefficients μ depend on wavelength λ
 - for instance free flight distance much longer for long wavelengths:

- makes path invalid for different wavelength?
- can we still exploit coherence?

hero wavelength sampling [WND *****14]

- sample perfectly for one single wavelength λ_0
- evaluate path for a stratified set of wavelengths λ_i at the same time
- optimally weighted combination via **MIS (balance heuristic)**
 - limited to **regular tracking** because it requires explicit evaluation of PDF

$$rac{f(ar{\mathbf{x}},\lambda_i)}{\sum_j p(ar{\mathbf{x}},\lambda_j)}$$

image comparison 64spp

skin material with 1 wavelength

image comparison 64spp

skin material with 4 wavelengths (SSE)

image comparison 64spp

skin material with 8 wavelengths (AVX)

spectral tracking without PDF [KHLN17]

- ightarrow sample by common majorant $ar\mu$
- how do decide for null collision, scattering, or absorption?
- \blacktriangleright probability according to $\mu_n(\lambda)$, $\mu_s(\lambda)$, $\mu_a(\lambda)$
 - \blacktriangleright pick by maximum over λ_i
 - pick by average weighted by spectral path throughput history

spectral tracking without PDF [KHLN17]

- ightarrow sample by common majorant $ar\mu$
- how do decide for null collision, scattering, or absorption?
- \blacktriangleright probability according to $\mu_n(\lambda)$, $\mu_s(\lambda)$, $\mu_a(\lambda)$
 - \blacktriangleright pick by maximum over λ_i
 - pick by average weighted by spectral path throughput history
 - results in different noise patterns:

speed!

low variance estimators are important

but also, in volumes most of the run time is memory fetching

grid, super voxels [SKTM11], kd-tree [YIC *****11], adaptive blocks

- adaptivity driven by
 - pixel footprint / camera tessellation
 - heterogeneity / variation
- two-level modelling (super voxel, kd nodes) store majorants $\bar{\mu}$ in coarse blocks

grid, super voxels [SKTM11], kd-tree [YIC *****11], adaptive blocks

- adaptivity driven by
 - pixel footprint / camera tessellation
 - heterogeneity / variation
- two-level modelling (super voxel, kd nodes) store majorants $\bar{\mu}$ in coarse blocks
 - perform regular tracking on coarse blocks [SKTM11]

grid, super voxels [SKTM11], kd-tree [YIC *****11], adaptive blocks

- adaptivity driven by
 - pixel footprint / camera tessellation
 - heterogeneity / variation
- two-level modelling (super voxel, kd nodes) store majorants $\bar{\mu}$ in coarse blocks
 - perform regular tracking on coarse blocks [SKTM11]
 - > access $\mu_s(\lambda), \mu_a(\lambda)$ on fine levels to sample collision type

regular tracking

- needs to step through every voxel, bad for fine tessellations
- well chosen tessellation is a big advantage!

null collision-based tracking

- is independent of tessellation and is efficient in thin media (few events)
- high number of events in dense media, regardless of tessellation!

- accessing the memory within the same voxel is still expensive
- alleviated by decomposition tracking [KHLN17]
 - separate μ into sum of coarse and fine, to sample distance pick shortest (and early out!)
 - also profits full regular tracking

thin/dense media make a difference

no event inside the medium means we cannot pick up emission:

thin/dense media make a difference

following the idea of beams, collect emission along a ray

particularly well suited for regular tracking, touching all voxels anyways

thin/dense media make a difference

direct application of MIS with NEE [VH13] **introduces noise**:

reason: NEE cannot create paths with end point outside the medium forward scattering PDF is poor, however, and now it picks up line emision!

thin/dense media make a difference

end of content

up next:

summary and open research problems

summary

free flight distance sampling

- woodcock/delta tracking transmittance estimation
 - track-length
 - residual ratio
 - free flight versions

path sampling

- path space formulation
- summary of advanced methods

acceleration structures

- for regular tracking
- for null collisions (bottom-level)

null collision algorithms and MIS

- missing link to integrate into powerful framework
 for instance combine with equi-angular sampling
- can we estimate the PDF?
 - expectation and division do not commute!

$$X = rac{f(ar{\mathbf{x}})}{p(ar{\mathbf{x}})}$$

leverage recent advances in machine learning

- special purpose denoising
 including a volume prior?
- path guiding for volumes?
 - importance sampling for multiple vertices?

joint handling of surfaces and geometry

- still often surface transport is handled separately
 makes inclusion of all interreflections hard

 - custom-cut algorithms increase maintenance cost

generalisation to correlated scatterers

- core assumption of exponential path length: uncorrelated particles!
 particle repulsion such as in cell growth is very correlated

 - really, no collision can be found inside the current particle (min distance)
 - some existing work

[d'Eon 2018, Bitterli et al. 2018]

thank you!

any questions?

acknowledgements:

- Peter Kutz
 - for tracing down many of early delta tracking papers
- Jaroslav Křivánek & reviewers
 - for feedback on the paper draft
- Maurizio Nitti
 - for help w/ fast forward and illustrations

