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Abstract

3D Gaussian splatting has been widely adopted as a 3D representation for novel-view synthesis, relighting, and 3D generation

tasks. It delivers realistic and detailed results through a collection of explicit 3D Gaussian primitives, each carrying opacity

and view-dependent color. However, efficient rendering of many transparent primitives remains a significant challenge. Existing

approaches either rasterize the Gaussians with approximate per-view sorting or rely on high-end RTX GPUs. This paper

proposes a stochastic ray-tracing method to render 3D clouds of transparent primitives. Instead of processing all ray-Gaussian

intersections in sequential order, each ray traverses the acceleration structure only once, randomly accepting and shading a

single intersection (or N intersections, using a simple extension). This approach minimizes shading time and avoids primitive

sorting along the ray, thereby minimizing register usage and maximizing parallelism even on low-end GPUs. The cost of rays

through the Gaussian asset is comparable to that of standard mesh-intersection rays. The shading is unbiased and has low

variance, as our stochastic acceptance achieves importance sampling based on accumulated weight. The alignment with Monte

Carlo philosophy simplifies implementation and integration into a conventional path-tracing framework.

1. Introduction

Following the work of Kerbl et al. [KKLD23], Gaussian splatting
and its variations have become the de-facto standard 3D represen-
tation for novel-view synthesis, relighting, and 3D generation. This
representation is based on a collection of explicit 3D Gaussians car-
rying opacities and view-dependent colors, and produces realistic
and detailed reconstructions.

However, it is not obvious how to render a large set of scat-
tered semi-transparent primitives accurately and efficiently. Even
for camera rays, many layers of partially visible primitives may
contribute to the final shading, not to mention the cost of secondary
effects (e.g., shadows and inter-reflections). This problem (and our
solution) is not specific to 3D Gaussians and extends to any semi-
transparent primitive that rays can intersect; for simplicity, we will
assume 3D Gaussians in this paper.

Existing methods render Gaussians using either rasterization or
ray tracing, and both approaches struggle with multi-layer trans-
parency. Rasterization requires sorting Gaussians per view or im-
age bucket, which merely approximates the exact per-ray sorting
and inevitably introduces errors that manifest as visual artifacts
upon camera motion. In addition, rasterization has inherent limita-
tions in handling lighting effects such as shadows, reflections, and
global illumination. To address these issues, 3D Gaussian ray trac-
ing [MLMP∗24] has been proposed. However, this method requires
the sequential computation of all (relevant) Gaussian intersections
along a ray, to ensure correct shading. Furthermore, it uses trian-
gle meshes to bound Gaussian primitives, which enables the use of
standard mesh acceleration structures for Gaussian ray tracing, but

Figure 1: Eternal Whisper of a Seashell. A seashell reconstructed

using 3D Gaussian splatting, in a scene made of traditional meshes

and physically based materials. Shadows, glossy reflections on the

base, refractions in curved glass, and depth-of-field effects are

seamlessly added using a Monte Carlo path tracer that integrates

our method. Please also see the supplementary videos.

can be expensive on some hardware with limited resources since
the number of triangles is a multiple of the number of Gaussians.

In this paper, we propose a stochastic ray-tracing method to ren-
der 3D clouds of transparent primitives. Instead of processing all
ray-Gaussian intersections in sequential order, each ray traverses
the acceleration structure only once, accepting and shading just a
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single intersection. As a simple extension, we also show how to
shade N intersections within a single traversal.

Unlike previous approaches, our method incorporates a stochas-
tic decision inside the ray-traversal logic: each intersection is ac-
cepted probabilistically based on its opacity. The fractional opacity
of the intersection is treated as a probabilistic decision between a
fully opaque and fully transparent event. We prove that this strat-
egy yields an unbiased estimate of the final radiance. It minimizes
shading time as only the closest accepted intersection per ray needs
shading. It also avoids sorting the Gaussians along the ray and even
storing extra data in its payload. In addition, once an intersection
is accepted, the BVH nodes beyond the intersection can be skipped
by clipping the ray segment, further lowering the traversal cost. In
a GPU implementation, this method also saves on register usage,
maximizing on-chip parallelism even on low-end GPUs.

While the stochastic nature of our method introduces noise, it
converges rapidly over just a few iterations. In scenes containing
both Gaussian assets and mesh geometry with traditional materi-
als, we consistently observe that noise due to our method dimin-
ishes faster with increasing sample count than the variance due to
more complex light paths. This supports the idea that a fast low-
noise estimator is more beneficial than a slower noise-free one for
ray-tracing Gaussians in such practical scenes. Thanks to its sim-
plicity, our approach has been successfully integrated into a com-
mercial Monte Carlo renderer, allowing seamless rendering of 3D
Gaussians alongside conventional 3D assets (Fig. 1).

2. Related work

Gaussian representations and applications. 3D Gaussian splat-
ting (3DGS) [KKLD23] has become an established 3D represen-
tation for novel-view synthesis from multi-view images. It models
objects and scenes as collections of thousands to millions of trans-
parent anisotropic Gaussians with view-dependent color.

Many extensions to 3D Gaussian splatting have been pro-
posed, e.g. to achieve better reflections [YHZ24], as well as re-
lightable representations that store material properties per Gaus-
sian [GGL∗23, LZF∗23]. Several methods for text-to-3D genera-
tion have also adopted 3D Gaussians as their output representa-
tion [ZBT∗24, XLX∗24]. These applications are orthogonal to our
work but call out the importance of fast and accurate rendering of
the resulting clouds of transparent primitives.

Addressing 3DGS limitations. The rasterization efficiency in
3DGS is key to its success, but it also comes with limitations: The
3D Gaussians are flattened into camera-facing splats (“billboards”)
and their sorting order is also approximate. StopThePop [RSP∗24]
addresses the first issue by using the mean of the 1D Gaussian along
a virtual ray as the contribution point, and the second by a hierar-
chical sorting approach. Hahlbohm et al. [HFW∗24] introduced a
hybrid approach with similar improvements. However, all rasteriza-
tion approaches necessarily approximate the sorting order, or need
to handle an unbounded number of primitives per pixel (see below).

2D Gaussian splatting [HYC∗24] uses flat primitives with nor-
mal vectors, which can benefit the fitting of smooth surface struc-
tures and leads to a precise ray-Gaussian intersection definition. In-

stead of splatting, Condor et al. [CSB∗24] treat mixtures of Gaus-
sian (or other, e.g. Epanechnikov) 3D kernels more rigorously as
defining a volumetric density field that can be rendered using phys-
ically based volume-scattering approaches. Exact volumetric ellip-
soid rendering [MHK∗24] uses 3D ellipsoids as another approach
to turn a collection of transparent primitives into a rigorously de-
fined volumetric field. These methods address the challenge of pre-
cisely defining the contribution of a transparent 3D primitive to a
ray (pixel), but do not fundamentally increase the efficiency of han-
dling many such primitives per ray.

Order-independent transparency (OIT). OIT is the long-stan-
ding problem of rasterizing unbounded numbers of partially trans-
parent primitives with correctly ordered blending. The A-buffer
[Car84] provides a correct solution but requires sorting unbounded
arrays—a poor fit for modern GPU rasterization. Stochastic trans-
parency [ESSL10] addresses the issue using a Monte Carlo esti-
mator at the cost of introducing some noise; we take a similar ap-
proach in the ray-tracing context. Multi-layer alpha tracing [BG20]
is a more recent method combining rasterization and ray tracing.

Two concurrent and independent works [KVK∗25, HGWL25]
propose methods closely related to ours. They share similar core
ideas, applied in the context of efficient and accurate rasterization.
Our method focuses on ray tracing, demonstrating the effective-
ness of the stochastic approach in scenarios involving other non-
Gaussian assets, secondary reflections and soft shadows (see also
supplementary videos).

To our knowledge, no prior work has explored the application
of these ideas within the ray-tracing context, where it is typically
assumed that sorting an arbitrary number of primitives is straight-
forward. While this assumption holds in principle, we demonstrate
that relaxing strict sorting and instead adopting a Monte Carlo
strategy—akin to stochastic transparency—can yield substantial ef-
ficiency improvements without compromising visual fidelity.

Ray-tracing transparent primitives. R3DG [GGL∗23] proposed
an inverse rendering method for relightable Gaussian reconstruc-
tion that includes a ray-tracing solution for visibility (transmit-
tance) computation. A single BVH traversal finds all Gaussians
along the ray and their transparencies are multiplied to compute the
ray transmittance. This approach is related to ours but works only
for transmittance where the intersection order does not matter. Our
method is also based on a single BVH traversal but can compute
unbiased radiance estimates, where order matters.

A concurrent work [WEM∗24] unifies the representation for
3D Gaussian rasterization and ray tracing, rasterizing primary rays
and ray-tracing secondary effects, significantly improving render-
ing performance. Our method fits into this formulation as it is not
limited to tracing the splats used in the original 3DGS.

3D Gaussian ray tracing [MLMP∗24] is the closest related work
to ours. That approach bounds each Gaussian with a stretched
icosahedron mesh and uses standard triangle-based ray-tracing ac-
celeration structures to find the first K primitives along the ray, re-
peating the tracing if more primitives are needed. Triangle ray trac-
ing is well optimized on recent RTX GPUs, but this approach is not
suitable for lower-end GPUs and CPUs.
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3. Stochastic ray tracing of transparency

In this section, we explain our method in three steps. First, we de-
fine how a single primitive is handled along a ray. Second, we dis-
cuss how to quickly find and exactly handle all primitive intersec-
tions along a ray, assuming storage and sorting of the full array
can be afforded. Finally, we present our Monte Carlo approach that
avoids the overhead of storing and sorting the intersections.

3.1. Handling a single Gaussian along a ray

Our approach can handle any transparent primitives that can be (ap-
proximately) bounded and whose depth along a ray can be com-
puted. For simplicity, we will assume a scene comprises a collec-
tion of 3D Gaussian primitives, each given as

G(x) = e
−

1
2 (x−µ)T Σ−1(x−µ)

, with Σ = R
T

S
2
R, (1)

where µ is its mean and Σ is its variance determined by a diagonal
scaling matrix S and a rotation matrix R.

While a 3D Gaussian is theoretically unbounded, we can com-
pute an approximate axis-aligned bounding box (AABB) by bound-
ing the ellipsoidal volume

∥

∥

∥
S
−1

R(x−µ)
∥

∥

∥

2
≤ s, (2)

where s represents the standard deviation beyond which the Gaus-
sian is considered negligible; in all our experiments we use s =
2
√

2 ≈ 2.8. For simplicity, we compute the bounding box of an un-
rotated Gaussian, rotate, and expand the box; a tighter bound can
be found with more computation.

The intersection of a 3D Gaussian with a straight line (ray) is a
1D Gaussian along the line. A natural way to define a intersection
depth (i.e., shading position) is to take the mean of this 1D Gaus-
sian [MLMP∗24,RSP∗24]; other definitions can also be used in our
framework. If the shading position lies behind the ray’s origin, or
outside the aforementioned bounding ellipsoid, the intersection is
culled. The remaining intersected 3D Gaussians contribute to the
final shading along the ray.

3.2. Single BVH traversal with exact radiance computation

As long as the AABBs of all 3D Gaussians are well defined, a spa-
tial structure, such as a bounding volume hierarchy (BVH), can
be efficiently constructed over them. This typically is done within
frameworks such as Embree [WWB∗14] and Optix [PBD∗10]. A
single ray traced through the scene will intersect multiple AABBs
which can be found in a single BVH traversal; however, the re-
sulting Gaussian intersections (if valid) will not be sorted in depth
order. Instead, they will be in “BVH order” which roughly approx-
imates depth order but could differ significantly in some cases, es-
pecially when large Gaussians are present.

A complex scene can contain millions of primitives, with a single
ray potentially intersecting thousands of them. An exact solution
would maintain a dynamic list of all intersections and sort the list
before computing the radiance estimate (given below). This may
be sufficient for some applications, but it also poses challenges for
GPU implementation.

α̂1 = 0 α̂2 = 0 α̂3 = 1 α̂4 = 0 α̂5 = 1 α̂6 = 0

Figure 2: Ray tracing stochastic binary opacities. This example

illustrates a ray intersecting 6 3D Gaussians. Each intersection has

an opacity αi at the mean of a 1D Gaussian. A random number ξi ∈
[0,1] determines the binary opacity α̂i, where α̂i = 1 if ξi < αi and

α̂i = 0 otherwise. In this case, only α̂3 and α̂5 are opaque (= 1); the

rest are transparent (= 0). Final shading uses the closest opaque

intersection, α̂3. If α̂5 = 1 is accepted, farther intersections (e.g.,

α6) can be skipped. Evaluations need not follow distance order.

For instance, if α̂5 = 1 is stored in the ray’s payload and α̂3 = 1 is

later accepted, the payload is simply updated with α̂3 = 1. Different

runs may yield different accepted intersections. Such runs can be

performed simultaneously during a single traversal (Section 3.5).

Given a ray-Gaussian intersection at depth t, we can evaluate its
opacity α ∈ [0,1] and shading color c. The shading color may be
dependent on the view or on other scene properties (e.g., material
or lighting). Given a ray intersecting M 3D Gaussians, the exact
shading color L along the ray is the accumulated contribution from
all intersections, sorted from closest to farthest:

L =
M

∑
i=1

Tiαici, with Ti =
i−1

∏
j=1

(1−α j), (3)

where Ti is the transmittance from all prior intersections along the
ray. L can be interpreted as the foreground color, and the overall
opacity along the ray is 1−TM+1. This result can be further com-
posited with any background color to get the final rendering color.

3.3. Stochastic binary opacities

We are now ready to introduce our Monte Carlo approach which
avoids the need to sort or store the intersections. We introduce a
Russian Roulette process to define binary opacities α̂i ∈ {0,1}:

α̂i =

{

1, with probability αi,

0, with probability 1−αi.
(4)

We have thus constructed M binary random variables α̂i with ex-
pectations matching the opacities of the primitives along the ray:
E[α̂i] = αi. Since the shading L depends linearly on each of the
opacities αi in isolation, we can replace every αi by α̂i in Eq. (3) to
obtain an unbiased estimator L̂ for L:

L̂ = ∑
i=1

T̂iα̂ici, where T̂i =
i−1

∏
j=1

(1− α̂ j). (5)

The unbiasedness of L̂ depends on the mutual independence of the
random variables α̂i. Specifically, if α̂i and α̂ j are mutually inde-
pendent, the expectation of their product is equal to the product of
their individual expectations: E[α̂i · α̂ j] = E[α̂i] ·E[α̂ j] = αi ·α j.
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With this process, if an intersection is accepted as having an
opacity of one, all subsequent intersections (i.e., ones with greater
depths t j) along the ray can be ignored. As a result, the estimator L̂

reduces to the contribution from the closest accepted intersection,
denoted by index i (see Fig. 2). Formally:

L̂ = ci, where

{

α̂i = 1,

α̂ j = 0, ∀ j such that t j < ti.
(6)

3.4. Ray intersection algorithm

Our method requires a single ray-BVH traversal operation that
searches for the closest accepted intersection. For each processed
primitive bounding box, the intersection routine in Algorithm 1 is
invoked. The intersection is accepted if it (1) passes the Russian
Roulette test, (2) lies within the valid ray range, and (3) is not neg-
ligible (i.e., is inside the bounding ellipsoid). Upon acceptance, the
callback reports the hit to update the ray’s far range to exclude far-
ther intersections. The reported hit, containing the primitive’s in-
dex, will then be shaded in a ray-hit program.

With this approach, the ray is traced only once. Most intersec-
tions are skipped, as only those closer than the latest accepted in-
tersection are processed further. Furthermore, each ray is shaded
at most once, at the closest accepted intersection returned by the
intersection routine in Algorithm 1.

3.5. Efficient multi-sample estimation

A single evaluation of the estimator L̂ (6) per pixel can yield a noisy
image. To reduce this noise, the standard approach is to average the
contributions of N evaluations:

L̂ =
1

N

N

∑
k=1

L̂k. (7)

This can be achieved by tracing a ray independently N times. Our
method allows for performing such N instantiations (for one ray)
within a single BVH traversal. For each instantiation, we track the
ID and hit distance of the closest accepted primitive. And for each
tested primitive, we instantiate the stochastic opacity α̂i N times. At
the end of the traversal, we have N independent (but not necessar-
ily unique) intersections, each giving rise to an estimator L̂k. This
implementation can be very efficient, provided that the increased
memory usage does not significantly degrade on-chip parallelism.

3.6. Discussion

A notable advantage of our stochastic approach is its computa-
tional simplicity on GPUs. Unlike previous approaches, our single-
sample variant does not require maintaining a dynamic buffer of in-
tersections in registers or global video memory, nor need repeated
ray generations and traversals. Buffers in global memory suffer
from high access latency, while per-thread fixed buffers consume
additional registers, reducing on-chip parallelism. This issue is par-
ticularly acute on low-end GPUs with more constrained resources.

In our method, the ray payload remains minimal as it only stores
the nearest “opaque” intersection. This is also advantageous in

Algorithm 1 Ray-primitive intersection routine. Inputs: 3D Gaus-
sian g with bounding box intersected by the ray r.

1: procedure INTERSECTPRIMITIVE(g, r)
2: g1← GETGAUSS1D(g, r) ▷ Compute 1D Gaussian along ray
3: t← g1.µ ▷ Retrieve the 1D Gaussian mean
4: if t ≤ r.tmin or t ≥ r.tmax then

5: return ▷ Intersection is outside the valid ray range
6: end if

7: if ISNEGLIGIBLE(g,g1) then

8: return ▷ Mean of g1 is outside the AABB of g; Eq. (2)
9: end if

10: p← r.o+ t r.d ▷ Calculate intersection position
11: ξ← RNG(0,1, p) ▷ Position-dependent pseudo-random number
12: if ξ < g1.α then

13: return ▷ Intersection rejected by Russian Roulette
14: end if

15: REPORTINTERSECTION(g, t) ▷ Clip ray: r.tmax← t

16: end procedure

graphics APIs such as Vulkan and DXR, which impose strict lim-
itations on direct access to the ray payload (a register-based, per-
path data structure) in an intersection shader, for storing a long list
of samples. Instead, these APIs often require round-trips between
any-hit and intersection shaders, increasing instruction count and
implementation complexity.

When the camera stops moving, a few additional iterations may
still be needed for the image to fully converge, but this delay be-
comes negligible when 3D Gaussians are rendered alongside other
types of 3D assets in a Monte Carlo path tracing framework. 3D
Gaussians contribute to global illumination effects such as shad-
ows and reflections, with stochastic opacity being only one source
of Monte Carlo noise among various other sampling processes.
In scenes featuring complex materials, we frequently observe that
the convergence on stochastic opacity often occurs earlier than for
other effects. That said, in such scenarios, quickly obtaining a result
from a ray is more beneficial than perfectly shading the Gaussians
in every iteration, as the latter’s higher computational cost can slow
down overall scene convergence. Alternatively, improved conver-
gence can be achieved through a global importance sampling strat-
egy for each light path sample, rather than focusing exclusively on
noise-free rendering of 3D Gaussians.

Finally, with the cost of storing some samples in the ray payload,
the multi-sample variation provides an option to balance between
interactivity and faster convergence.

4. Implementation details

4.1. Matching rasterizer’s depth estimate

Using the mean of the 1D Gaussian can lead to results that are
inconsistent with those produced by a rasterizer. This discrepancy
arises because the original 3DGS calculates depth based on the pro-
jected center of 3D Gaussians onto the camera direction, and inter-
polates inverse depth after screen projection.

It would be best to train the Gaussians with mean-based depth
[RSP∗24,MLMP∗24]. However, for compatibility with existing 3D
assets reconstructed using publicly available rasterizer-based tools
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(e.g., PolyCam, Scaniverse), we can adapt the ray tracer to approx-
imately align with center convention. Specifically, the distance t in
Algorithm 1 is computed by projecting the Gaussian center onto
the camera direction. This still does not exactly match the raster-
izer, because a Gaussian does not remain a Gaussian under an affine
transformation. As our results show, the remaining error is minor.

4.2. Stateless GPU pseudo-random number generation

Some commonly used GPU (pseudo-)random number generators
(e.g., a Sobol) usually have a state initialized with a seed, and need
to update the state for the next generated number. Nevertheless,
some modern graphics APIs for GPU raytracing, like Vulkan or
DXR, do not allow writing to a ray payload or buffers in an inter-
section shader to update this state. Instead, with these APIs, one has
to update in a special any-hit shader, which in turn requires routing
the ray-tracing data back and forth between different shaders to de-
termine the acceptance. Such a requirement introduces extra cost
and forbids a unified ray-tracing framework across various plat-
forms: for example, Metal instead does not allow an any-hit shader.

To mitigate these issues, we use a canonical stateless trigono-
metric hash function [Rey98] to generate pseudo-random num-
bers in the intersection shader. Although other hash functions ex-
ist with higher sampling quality [JO20], we use the trigonometric
one as it is called frequently (for each potential intersection), so
high efficiency is crucial. In addition, to make the hashed num-
bers frame-dependent, we hash them on the hit position (Algo-
rithm 1, line 11) which has been perturbed with frame-number-
dependent quasi-random numbers sampled from a stateful Sobol
sequence [BdTT∗11] during the camera-ray generation. Thus, the
numbers generated by hashing are also frame-number-dependent.

In particular, we use two hash functions, one scalar and one 2D:

r1(q) = fractional(b1sin(a1q)), (8)

r2(q) = fractional(b2sin(aT
2 q)), (9)

where “fractional()” takes the value’s fractional part. The heuristi-
cally chosen coefficients a1, a2, b1, and b2 are large enough so that
the trigonometric function has sufficiently high frequency. For a 3D
hit position p, we generate a random number (see Algorithm 1)

ξ(p) = r2(pxy + r1(pz)), (10)

where pxy is the 2D vector containing the x- and y-coordinates of p

and pz is the z-coordinate of p. One particular feature we want from
the trigonometric hash function is effectively enlarging the pertur-
bation to produce sampling with sufficient quality. Notice that the
hit position p can be treated as the hit position of the ray without
perturbation (i.e., a function of the geometry and screen pixel loca-
tion), plus the additive quasi-random perturbation as a function of
both the stateful Sobol quasi-random number generator and the ge-
ometry. With sufficiently large a1, a2, b1, and b2, the sine function
applied to p will effectively enlarge the disturbance and eliminate
the dependence on the regularity of the screen pixel position due to
its cyclical nature.

We use a1 = 91.3458, a2 = [12.9898,78.233]T , b1 =
47453.5453, b2 = [43758.5453,43758.5453]T . The quasi-random
number ξ is sufficiently uniform for the ray tracer to converge.

Table 1: Offline rendering performance (in seconds). #G means

number of 3D Gaussians in millions. We test the performance of

OursMean on a Windows 11 desktop, implemented with Vulkan on

GPU and Embree on CPU.

Asset #G
64 spp 256 spp 1024 spp

GPU CPU GPU CPU GPU CPU

drjohnson 3.41 0.86 46.78 3.35 191.33 13.41 759.40
playroom 2.55 0.60 31.68 2.43 127.39 9.32 511.90

room 1.59 0.61 31.93 2.38 126.95 9.43 508.62

furniture 0.11 0.27 7.07 1.60 28.37 5.49 116.72
cart 0.18 0.27 12.13 1.60 48.64 6.30 195.45
girl 0.15 0.40 12.40 1.60 49.60 7.01 197.49

racoon 0.09 0.53 7.47 1.28 28.91 5.38 116.93

bear 0.42 1.47 10.00 1.81 39.79 7.42 159.09
jacket 0.31 0.53 12.00 2.03 47.25 7.72 189.66
shoe 0.48 0.53 12.40 2.13 49.49 8.33 197.79

armor 2.90 0.53 8.53 2.03 33.60 8.53 134.40

sphere 2.24 0.80 39.73 3.20 162.03 12.80 656.46
sculpture 7.63 0.93 40.40 4.16 157.12 16.66 639.80

bike 5.85 1.07 45.20 4.27 182.40 18.08 739.86
motorcycle 6.85 1.33 40.27 3.84 163.84 15.75 657.68

5. Results

We implemented our method on different platforms and within
multiple graphics APIs. On Windows 11, we integrated the method
in a Vulkan [Bai19] GPU path-tracing framework. We also tested a
version using Embree [WWB∗14] for CPU path tracing. We tested
on a desktop with an AMD Ryzen 9 5950X 16-Core Processor 3.40
GHz CPU, 128 GBytes RAM, and an Nvidia GeForce RTX 3090
with 24 GB Video RAM. On MacOS, we used Metal [App25] to
implement GPU path tracing and Embree for CPU path tracing. We
tested on a Macbook Pro 16-inch M1 Max with 32 GBytes RAM,
running MacOS 14.7.1.

We tested our method with two different definitions for the depth
of a Gaussian intersection (see Section 4.1). When defining depth
as the 1D Gaussian mean, we denote our method as OursMean.
When the depth is evaluated with respect to the center of the in-
tersected 3D Gaussian, which is closer to original 3DGS, we de-
note our method as OursCenter. Assets from 3DGS [KKLD23]
are rendered at 1200 × 800 resolution; other assets are rendered
at 1280×960.

Performance. We measured the performance of our method on
Windows (CPU and Vulkan, shown in Table 1) and MacOS (CPU
and Metal, Table 2), with sampler per pixel (spp) ranging from 64
to 1024. We also measured the interactive rendering performance in
frames per second and compared to 3DGS rasterization in Table 3.
Please see the captions of the respective tables for more details.

Comparison to 3DGS rasterization. In Fig. 3, we compare three
assets from the 3DGS [KKLD23], showing their open-source im-
plementation in the leftmost column. The right two columns are
both rendered with our ray tracer. When we evaluate the depth at
the 1D means, we see some quality degradation in the second col-
umn; this is because the assets are reconstructed using the center-
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Table 2: Offline rendering performance on MacOS (in seconds).

We test the performance of OursMean on an M1 Macbook Pro, im-

plemented using Metal on GPU and Embree on CPU. The GPU im-

plementation brings up to 5× speedup over CPU. Nevertheless, the

GPU performs worse in some large scenes (e.g., scul pture). This

is due to the excessive memory access, cache thrashing, and frag-

mented memory access during the BVH traversal, which overwhelm

the GPU’s bandwidth and parallel architecture, causing low arith-

metic intensity. For example, comparing scul pture with jacket,

whose file-size difference is more than 20×, we observed a 1.6×
last-level cache miss rate, 52× more cache bytes read, and more

time spent on memory address translation (23.9% vs. 7.19%). The

Mac CPU handles large assets better with more advanced caching,

pre-fetching, and flexibility for irregular workloads.

Asset
64 spp 256 spp 1024 spp

GPU CPU GPU CPU GPU CPU

drjohnson 19.5 72.3 72.6 283.9 285.1 1130.2
playroom 13.3 49.6 47.8 193.1 185.9 767.0

room 13.0 51.2 46.7 199.4 181.4 792.0

furniture 6.8 10.4 21.6 36.2 81.1 139.5
cart 4.3 17.7 11.8 65.4 41.8 256.2
girl 5.4 18.4 16.2 68.4 59.4 268.2

racoon 2.8 9.2 5.6 31.2 17.0 119.4

bear 4.0 14.3 13.4 54.3 51.8 225.9
jacket 4.4 16.6 15.6 65.8 60.6 263.1
shoe 5.0 18.3 17.7 73.5 69.0 288.1

armor 4.8 11.7 15.7 47.1 60.7 181.0

sphere 16.1 66.7 58.8 261.4 229.8 1040.2
sculpture 7769.8 67.6 31073.8 265.0 124289.8 1054.6

bike 84.5 77.0 332.6 302.4 1325.0 1204.2
motorcycle 67.5 67.9 264.7 266.3 1053.3 1059.7

based depth in the rasterizer. When we define depth according to
the center of the intersected Gaussians in the rightmost column,
our images match rasterization closer, as expected.

Comparison to 3DGRT. 3DGRT [MLMP∗24] takes a very dif-
ferent approach tailored to RTX GPUs, making comparison non-
trivial. However, even on RTX our method still has better single-
sample performance. We evaluated the room scene in Fig. 3 using
the official 3DGRT implementation [MLMP∗24] on a dual-boot
Windows/Ubuntu22 system with an RTX 3090 GPU. The scene
was trained using 3DGRT, resulting in an asset with 1.28 million
Gaussians, and rendered at 1557× 1038 resolution. 3DGS rasteri-
zation renders at 3.9ms/frame (Windows & Ubuntu). Ours renders
at 12.2ms/frame (Windows); the performance is estimated by aver-
aging over 64 spp. 3DGRT renders at 34.3ms/frame (Ubuntu).

Assets from different sources. Our method works well with as-
sets from different source pipelines. In Fig. 4, we show assets gen-
erated by large reconstruction model (LRM) [ZBT∗24] (top), single
reconstructed objects (middle), and scene-scale assets (bottom).

Convergence. While the stochastic binary opacity Section 3.3 in-
troduces noise, 1 spp already produces reasonable renderings, and

Table 3: Interactive render performance (in FPS). Rasterization

rendering [KKLD23] is tested with their open-sourced viewer on

the Windows 11 desktop. Rasterization outperforms our GPU ray

tracer, as expected, but our method still provides a real-time ex-

perience. Meanwhile, our method remains interactive on low-end

GPUs, even for scene assets.

Asset 3DGS (Win.)
OursMean (Win) OursMean (Mac)

GPU CPU GPU CPU

drjohnson 324 76.4 1.3 3.6 0.9
playroom 282 109.9 2.0 5.5 1.3

room 314 108.6 2.0 5.6 1.3
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Figure 3: Comparison with rasterization. The three scene as-

sets are from 3D Gaussian splatting [KKLD23], and are rendered

with their open-sourced implementation in the leftmost column. The

right two columns are both rendered with our stochatic ray tracing

method. Because the assets are reconstructed using rasterization,

we see some quality degradation in the second column because we

evaluate the depth at the position where rays intersect 3D Gaus-

sians. As introduced in Section 4.1, we adapt the depth according

to the projected center of the intersected Gaussians in the rightmost

column, producing images closely matching rasterization.

most noise is eliminated with 64 spp or less (Fig. 6). While our
method renders an unbiased estimate of the radiance, the stochastic
depth sampling in 3DGRT is a biased approximation. If an inter-
sected Gaussian is sampled with probability matching the opac-
ity of the intersection, it must be treated as fully opaque for unbi-
ased shading (technically, division by the probability cancels out
the opacity). In 3DGRT, stochastic depth sampling collects the first
k accepted transparent intersections, and their order is preserved,
resulting in a biased approximation. The bias becomes more pro-
nounced when k is small and intersections have low opacity. Thus,
k cannot be practically reduced to 1. A comparison showing the
bias is shown in Fig. 7, based on a close-up view of the room scene
from Fig. 3.

Multi-sample rendering. In Tables 4 and 5, we compare perfor-
mance under different multi-sampling settings (i.e., the number
N of samples taken in a single BVH traversal) while maintain-

© 2025 The Author(s).
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Generated assets

Reconstructed single-object assets

Reconstructed scenes

Figure 4: Assets generated with different methods. Our method renders well for assets from different authoring pipelines: LRM-generated,

single-object reconstructed and scene-scale reconstructed assets.

ing equivalent output quality. Performance improves as more sam-
ples are traced per pass, provided that parallelism is not signifi-
cantly compromised. This trend holds for the Apple Silicon back-
ends, which benefit from a sufficiently large L1 cache, and CPU
backends. Both also inherently offer limited parallelism due to the
lower number of cores. Instead, on the NVIDIA GPUs with many
more cores, the performance increases up to 8× multi-sampling on
NVIDIA GPUs, but significantly degrades beyond that point. The
payloads for all the rays share the L1 cache, and a larger payload
means less parallelism and a lower computational occupancy. In
addition, it can also be partly attributed to our integration within a
feature-rich production renderer—even without Gaussians the ray
payload is already 244 bytes. Our method adds no extra payload un-
less multi-sampling is enabled, highlighting its practicality in real-
world contexts where algorithms must compete for limited comput-
ing and memory resources alongside other system components. If
we customize the renderer by disabling advanced effects, reducing
the ray payload to just 56 bytes, it will bring a further 10% speedup
on Windows with RTX3090 and 25% speedup on Apple M1 Max.

Implementing multi-sampling is further constrained by some
graphics APIs (e.g., Vulkan and DirectX Raytracing). These APIs
restrict payload access to any-hit shaders, while the ray’s maximum
distance (tmax) can only be modified from intersection shaders.
Nevertheless, the maximum distance can only be computed from

multiple samples stored in the ray payload. Due to such a dilemma,
we have to report the maximal possible hit distance in the intersec-
tion shader, and rays cannot be shortened once intersections are
accepted, leading to more BVH traversal and associated perfor-
mance loss. This effect is evident when comparing Table 1 with
the 1024×1 case in Table 5. While multi-sampling can effectively
boost performance, our method with a single sample is a more gen-
eral and robust solution for feature-rich renderers.

Mixing Gaussians with meshes in production rendering. In
Fig. 1, we show that our method enables the composition of Gaus-
sians into a mesh-based environment, where the former project a
soft shadow on the base, and can be seen from the refraction of the
curved glass or the glossy reflection on the base or back panel. In
addition, the path tracer can replicate the camera defocus blur accu-
rately around the edges of the Gaussians. In Fig. 5, by putting a cafe
brewing asset into the drjohnson scene, we show that our method
enables lighting a mesh-based asset with complex materials plausi-
bly with an environment made of Gaussians. Both scenes are ren-
dered with 1024 spp and then denoised with a production denoiser
based on the work by Işık et al. [IMF∗21], which works well since
our method produces unbiased estimates. We use QMC sequences
for camera-ray generation. Because our ray-tracing method allows
combinations of assets, global stratified sampling across the entire
scene becomes crucial: we observed that some of the noise orig-

© 2025 The Author(s).
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Table 4: Timing of different multi-sampling settings on MacOS,

measured in seconds. Here m× n means m passes are used and

each pass performs n-multi-sampling in the ray payload. Acceler-

ation over using the single sampling (i.e., 1024× 1) ranges from

2.9× to 9.5× on with a Metal GPU pathtracer, and ranges from

2.5× to 4.3× on the CPU. The minimal timings for each scene or

device are marked in bold.

drjohnson playroom room

GPU CPU GPU CPU GPU CPU

1024×1 276.7 1101.9 179.8 747.3 175.4 771.7
256×4 97.8 467.8 63.4 304.8 60.3 281.5
64×16 44.1 330.2 29.8 212.7 28.0 177.1
16×64 30.6 302.1 22.6 185.0 21.6 149.1

4×256 26.9 304.9 19.7 188.0 19.4 152.0

Figure 5: Dr. Johnson’s Coffee Whirl. We mix assets made

of meshes and complex materials within the drjohnson Gaussian

splatting scene asset. See also videos in supplementary materials.

inates from Gaussians, while other noise stems from solving the
rendering equation on mesh surfaces.

Limitations and future work. Our method can evaluate Gaussian
splat opacity in various ways, and can approximately match a ras-
terizer by doing so using the projected camera depth. Minor differ-
ences to rasterization still remain in rendering results and could be
reduced with further effort, but we believe that instead of carefully
matching rasterization errors, it is better to invest in more accurate
reconstruction.

Our current implementation assumes the radiance of Gaus-
sians is known and unaffected by surrounding objects or lighting.
However, our method could be combined with relightable Gaus-
sians [GGL∗23, LZF∗23] without changes to the core algorithm.

Finally, we believe our method can be extended to differentiable
rendering; a straightforward gradient applied to the selected Gaus-

Table 5: Timing of different multi-sampling settings on Windows,

measured in seconds. Here m× n again means m passes are used

and each pass performs n-multi-sampling in the ray payload. For

the NVIDIA GPU, multi-sampling of 8 is the most optimal, about

4.5× faster compared with 1024× 1. Higher multi-sampling gets

inferior performance due to low parallelism caused by the increas-

ing sizes of payloads. The CPU implementation persistently shows

better performance with higher multi-sampling.

drjohnson playroom room

GPU CPU GPU CPU GPU CPU

1024×1 23.14 786.53 20.99 518.14 20.38 527.26
512×2 12.80 500.43 11.57 334.03 11.32 321.02
256×4 7.45 326.37 6.73 222.21 6.68 211.15
128×8 4.98 221.90 4.47 157.40 4.51 149.24
64×16 18.48 175.64 16.08 130.48 16.76 122.29
32×32 70.63 150.91 62.78 115.97 63.72 106.26
16×64 206.58 141.55 179.39 111.31 186.22 103.05

sian from our method would be easy to compute, but lower-variance
estimators could be derived with further research.

6. Conclusion

We presented a stochastic ray-tracing method to render large col-
lections of transparent primitives such as 3D Gaussian. Instead of
processing all ray-Gaussian intersections in sequential order, only
a single BVH traversal finds all Gaussians potentially contributing
to the ray. The opacity of each primitive is treated as a probabilistic
decision between a fully opaque and fully transparent event, which
means only the nearest opaque event needs to be found, avoiding
the need for sorting. We show that the resulting Monte Carlo es-
timator is unbiased and the method has interactive performance
even on low-end hardware. Our method has been integrated in a
commercial rendering product; we believe it can inspire further re-
search at the intersection of Monte Carlo rendering, 3D capture and
generation.

We believe our work can inspire further research at the inter-
section of Monte Carlo rendering, 3D capture, and generation. Our
method has been integrated into a feature-rich production renderer
which is used in Adobe Substance 3D Viewer [Ado24]. Our exper-
imental results were obtained using that renderer with comprehen-
sive ray payloads, rather than a minimal, GS-specific implementa-
tion.
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assets we tested, 1 spp already produces plausible rendering, and most noise is eliminated with 64 spp or less.
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Figure 7: Bias from stochastic depth sampling in 3DGRT. The stochastic depth sampling in 3DGRT is a biased approximation. We

implemented it in our renderer for comparison since the official 3DGRT implementation does not support it. The results are rendered with

64 spp. The bias of stochastic depth sampling becomes obvious when setting k = 1. In the left zoom-in, the cloth color through the glass

becomes more yellow. In the right zoom-in, the caustics from the refractions and reflections are dimmer.
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