
Neural Directional Encoding

for Efficient and Accurate View-Dependent Appearance Modeling

Liwen Wu1 Sai Bi2 Zexiang Xu2 Fujun Luan2 Kai Zhang2

Iliyan Georgiev2 Kalyan Sunkavalli2 Ravi Ramamoorthi1
1UC San Diego 2Adobe Research

Abstract

Novel-view synthesis of specular objects like shiny met-

als or glossy paints remains a significant challenge. Not

only the glossy appearance but also global illumination

effects, including reflections of other objects in the envi-

ronment, are critical components to faithfully reproduce a

scene. In this paper, we present Neural Directional En-

coding (NDE), a view-dependent appearance encoding of

neural radiance fields (NeRF) for rendering specular ob-

jects. NDE transfers the concept of feature-grid-based spa-

tial encoding to the angular domain, significantly improv-

ing the ability to model high-frequency angular signals. In

contrast to previous methods that use encoding functions

with only angular input, we additionally cone-trace spa-

tial features to obtain a spatially varying directional en-

coding, which addresses the challenging interreflection ef-

fects. Extensive experiments on both synthetic and real

datasets show that a NeRF model with NDE (1) outper-

forms the state of the art on view synthesis of specular

objects, and (2) works with small networks to allow fast

(real-time) inference. The source code is available at:

https://github.com/lwwu2/nde

1. Introduction

Some of the most compelling appearances in our visual

world arise from specular objects like metals, plastics,

glossy paints, or silken cloth. Faithfully reproducing these

effects from photographs for novel-view synthesis requires

capturing both geometry and view-dependent appearance.

Recent neural radiance field (NeRF) [37] methods have

made impressive progress on efficient geometry represen-

tation and encoding using learnable spatial feature grids

[5, 7, 29, 39, 45, 53]. However, modeling high-frequency

view-dependent appearance has achieved much less atten-

tion. Efficient encoding of directional information is just

as important, for modeling effects such as specular high-

lights and glossy interreflections. In this paper, we present

a feature-grid-like neural directional encoding (NDE) that

can accurately model the appearance of shiny objects.

View-dependent colors in NeRFs (e.g. [48]) are com-

NDE (ours) Ground truth

ENVIDR [26] Ref-NeRF [48] NDE (ours) Ground truth

0.52 FPS 0.02 FPS 75 FPS

Figure 1. Ours vs. analytical encoding. Methods like Ref-

NeRF [48] use an analytical function to encode viewing directions

in large MLPs, failing to model complex reflections (column 1-2

of the insets). Instead, we encode view-dependent effects into fea-

ture grids with better interreflection parameterization, successfully

reconstructing the details on the teapot and even multi-bounce re-

flections of the pink ball (3rd column of the insets) with little com-

putational overhead (75 FPS on an NVIDIA 3090 GPU).

monly obtained by decoding spatial features and encoded

direction. This approach necessitates a large multi-layer

perceptron (MLP) and exhibits slow convergence with ana-

lytical directional encoding functions. To that end, we bring

feature-grid-based encoding to the directional domain, rep-

resenting reflections from distant sources via learnable fea-

ture vectors stored on a global environment map (Sec. 4.1).

Features localize signal learning, reducing the MLP size re-

quired to model high-frequency far-field reflections.

Besides far-field reflections, spatially varying near-field

interreflections are also key effects in rendering glossy

https://github.com/lwwu2/nde

objects. These effects cannot be accurately modeled by

NeRF’s spatio-angular parameterization whose directional

encoding does not depend on the position. In contrast, we

propose a novel spatio-spatial parameterization by cone-

tracing a spatial feature grid (Sec. 4.2) to encode near-field

reflections. The cone tracing accumulates spatial encodings

along the queried direction and position, thus it is spatially

varying. While prior works consider only single-bounce

or diffuse interreflections [26], our representation is able to

model general multi-bounce reflection effects.

Overall, our neural directional encoding (NDE) achieves

both high-quality modeling of view-dependent effects and

fast evaluation. Figure 1 demonstrates NDE incorpo-

rated into NeRF, showing (1) accurate rendering of spec-

ular objects—a difficult challenge for the state of the art

(Sec. 5.1), and (2) high inference speed that can be pushed

to real-time without obvious quality loss (Sec. 5.2).

2. Related work

Novel-view synthesis aims to render a 3D scene from un-

seen views given a set of image captures with camera poses.

Neural radiance fields (NeRF) [37] has recently emerged

as a promising solution to this task, utilizing an implicit

scene representation and volume rendering to synthesize

photorealistic images. Follow-up works achieve state-of-

the-art results in this area, for unbounded scenes [1, 59],

in-the-wild captures [34], and sparse- or single-view recon-

struction [6, 14, 28, 46, 47, 51]. While the original NeRF

method [37] is computationally inefficient, it can be visu-

alized in real-time by baking the reconstruction into voxel-

[12, 15, 43, 57] or feature-grid-based representations (dis-

cussed below). The volumetric representation has been ex-

tended to work with signed distance fields (SDF) [50, 55]

for better geometry acquisition, and the volume-rendering

concept has also been applied to other 3D-related tasks such

as object generation [4, 5, 27, 30, 42].

Feature-grid-based NeRF. NeRF’s positional encod-

ing [37] is a key component for the underlying multi-layer

perceptron (MLP) network to learn high-frequency spatial

and directional signals. However, the MLP size needs to

be large, which leads to slow training and inference. In-

stead, methods like NSVF [29] and DVGO [45] interpo-

late a 3D volume of learnable feature vectors to encode

the spatial signal, showing faster training and inference

with even better spatial detail. Addressing the sparsity

in typical scene geometry, later works avoid maintaining

a large dense 3D grid via volume-compression techniques

such as hash grids [39] and tensor factorization [5, 7, 11].

These methods are compact and scale up the feature grid to

large scenes [2, 39] and even work with SDF-based mod-

els [25, 56]. The essence of feature-grid encoding is to in-

terpolate feature vectors attached to geometry primitives,

and similar ideas have also been applied to irregular 3D

grids [22, 44], point clouds [19, 20, 54, 62], and meshes [8].

Operations like mip-mapping are trivial on feature grids, en-

abling efficient anti-aliasing and range query of NeRF mod-

els [2, 16, 53]—something we also leverage in this paper to

encode rough reflection.

Rendering specular objects. Apart from geometry,

view-dependent effects like reflections from rough surfaces

are a crucial component in photorealistic novel-view syn-

thesis. Reflections are conventionally modeled by fitting

local light-field functions [10, 17, 36]. A 4D light field

presents more degrees of freedom than the constraints from

input images, which necessitates additional regularization

to avoid overfitting. Inverse-rendering approaches intro-

duce such a constraint by solving for parametric BRDFs

and lighting, then using forward rendering to reconstruct

the light field. Spherical-basis lighting [60] or split-sum ap-

proximation [31, 40] are usually used to tamper the Monte

Carlo variance of specular-reflection derivatives [3]. EN-

VIDR [26] and NMF [33] further explicitly consider global-

illumination effects by ray-tracing one or few bounces of

indirect lighting. On the other hand, Ref-NeRF [48] uses an

integrated directional encoding (IDE) to directly improve

NeRF’s view-dependent effects. IDE encodes the reflected

direction rather than viewing direction to let the network

learn an environment-map-like function and is pre-filtered

to account for rough reflection effects. Our neural direc-

tional encoding, similar to IDE, can model general view-

dependent appearance without assuming simplified lighting

or reflections but with smaller computation cost.

3. Preliminaries

We assume opaque objects with diffuse and specular com-

ponents and demonstrate our directional encoding using a

surface-based model that represents a scene using a signed

distance field (SDF) s(x) and a color field c(x,ω) (depen-

dent on the viewing direction ω). The SDF is converted to

NeRF’s density field σ following VolSDF [55] with a learn-

able parameter β controlling the boundary smoothness:

σ(x) =

1
2β exp

(

s(x)
β

)

if s(x) ≤ 0,

1
β

(

1− 1
2 exp

(

− s(x)
β

))

otherwise.
(1)

The color C(x,ω) of a ray with origin x and direction ω

can thus be volume-rendered [35]:

C(x,ω)=
∑

i

w(σ(xi))c(xi,ω), where (2)

w(σ(xi)) =
(

1− e−σ(xi)δi
)

∏

j<i

e−σ(xj)δj , (3)

with δi=∥xi−xi−1∥2 and xi denoting the ith sample point

along the ray. Like Ref-NeRF [48], we decompose the color

c into a diffuse color cd, specular tint ks, and specular color

cs queried in reflected direction ωr with surface normal n

given by the SDF gradient:

c(x,ω) = cd(x) + ks(x)cs(x,ωr), where

ωr = reflect(ω,n), n = normalize(∇xs(x)).
(4)

!

N'6-21%E.-'D7.5321%'3D5E.3F

>6?'@20%155O60

*.0/@200'E%3'2-/B.'1E%B'276-'4%P;516@'Q

!/RK /R: /RN
>53'%7-2D.3F

S1'3E.3F

T'D5E'

T'D5E'

T'D5E'

/ 0 123(+(

+-'/B.17'-'E%B2-/B.'1E%B'276-'4%PD6?'@20Q%

!RK !RKU: !R:

!

Figure 2. Pipeline of our neural directional encoding (NDE). We encode far-field reflections into a cubemap and near-field interreflec-

tions into a volume. Both representations store learnable feature vectors to encode direction and are mip-mapped to account for rough

reflections. Given a reflected ray, the features are combined by tracing a cone of size proportional to the surface roughness to aggregate

spatial features with cubemap features blended as the background. The result is fed into an MLP to output the specular color (Eq. (5)).

Here, the specular color cs is decoded from an MLP that

conditions on spatial feature f(x), directional encoding H

controlled by surface roughness ρ, and the cosine term n·ω:

cs(x,ωr) = MLP(f(x),H(x,ωr, ρ(x)),n · ω). (5)

cd,ks, f , ρ come from a spatial MLP (Sec. 4.3).

Discussion on directional encoding. Previous works [37,

48] use an analytical function for H dependent only on ωr

(and optionally ρ), which has several limitations: (1) the en-

coding function is fixed (not learnable), and (2) the spatial

context only comes from f(x). Both require the decoder

MLP to be large to fit the spatio-angular details of the spec-

ular color, which can be expensive and slow.

4. Neural directional encoding

To minimize the MLP complexity, we use a learnable neu-

ral directional encoding that also depends on the spatial

location. Specifically, our NDE encodes different types

of reflection by different representations, which include a

cubemap feature grid hf for far-field reflections and a spa-

tial volume hn that models near-field interreflections. As

shown in Fig. 2, we compute H by first cone-tracing hn

accumulated along the reflected ray, yielding near-field fea-

ture Hn (Sec. 4.2), and blending the far-field feature Hf

queried from hf in the same direction (Sec. 4.1):

H(x,ωr, ρ) = Hn(x,ωr, ρ) + (1− αn)Hf (ωr, ρ), (6)

where αn is the cone-traced opacity [24], and both features

are mip-mapped with ρ deciding the mip level.

4.1. Farfield features

Feature-grid-based representations [7, 29, 39, 45, 53] speed-

up spatial signal learning by storing feature vectors in vox-

els for local signal control. Similarly, we place feature vec-

tors hf at every pixel of a global cubemap to encode ideal

specular reflections. The cubemap is pre-filtered to model

reflections under rough surfaces in the split-sum [18] style,

where the kth level mip-map h
k
f is created by convolving the

downsampled hf using a GGX kernel [49] D with canoni-

cal roughness ρk evenly spaced in [0, 1]:

h
k
f = convolution(downsample(hf , k), D(ρk)). (7)

Given the surface roughness, we perform a cubemap lookup

in the reflected direction and interpolate between mip levels

to get the far-field feature:

Hf (ωr, ρ) = lerp

(

h
k
f (ωr),h

k+1
f (ωr),

ρ−ρk

ρk+1−ρk

)

, (8)

where lerp(·) denotes linear interpolation and ρ ∈ [ρk, ρk+1].
The cubemap-based encoding allows signals in different

directions to be optimized independently by tuning the fea-

ture vectors. This is easier to optimize than globally solv-

ing the MLP parameters, making it more suitable to model

high-frequency details in the angular domain (Fig. 3). The

coarse level feature is a consistently filtered version of the

fine level, which is empirically found to be better con-

strained than using independent feature vectors at each mip

level [23, 58].

4.2. Nearfield features

Parameterizing the specular color by a spatial and angular

feature is sufficient for distant reflections, but lacks expres-

sivity for near-field interreflections: different points query

IDE small IDE large Hf small (ours) Ground truth

Figure 3. Our cubemap-based feature encoding requires only a

small MLP (2 layers, 64 width) to model details in mirror reflec-

tions (3rd image) comparable with IDE [48] (2nd image; 8 layers,

256 width MLP) that fails when the MLP is small (1st image).

𝐱

𝝎!

𝐱

𝐱
!

𝐱

Spatio-angular Spatio-spatial Cone-traced

Figure 4. Spatio-spatial encoding (middle) is equivalent to the

common spatio-angular encoding (left) of mirror reflections, but

it captures the variation of x′ across different x. The idea can be

extended to model rough reflections by cone tracing mip-mapped

spatial features covered by the reflection cone (right).

the same hf , so spatially varying components can end up

being averaged out during optimization. Our insight is that

the spatio-angular reflection can also be parameterized as a

spatio-spatial function of current and next bounce location

(Fig. 4). Therefore, an MLP can decode the second bounce

spatial feature with f(x) in Eq. (5) to get mirror reflections.

For rough reflections, we aggregate the averaged second

bounce feature under the reflection lobe by cone tracing [9]

(Fig. 4, right), which volume renders the mip-mapped spa-

tial features hn using the mip-mapped density σn along

the reflected ray x+ωrt with mip level λi = log2(2ri)
at sample point x

′

i decided by the cone’s footprint ri =√
3ρ2∥x− x

′

i∥2:

Hn(x,ωr, ρ) =
∑

i

wi
nh

i
n, where

wi
n = w(σn(x

′

i, λi)), h
i
n = hn(x

′

i, λi).

(9)

The cone’s footprint is selected to cover the GGX lobe at x

(see supplemental document). Note that we do not use the

SDF-converted σ in Eq. (1) as it cannot be mip-mapped;

instead, we optimize a separate σn to match σ (Sec. 4.3)

jointly with the indirect feature hn. Both are decoded from

a tri-plane [5] Tn, whose each 2D plane is mip-mapped

similar to Tri-MipRF [16]:

σn(x
′

i, λi),hn(x
′

i, λi)=MLP(mipmap(Tn(x
′

i), λi)). (10)

The indirect rays are spatially varying, hence the cone-

traced near-field features are spatially varying too. This has

advantages over the angular-only feature for learning inter-

reflections and is empirically less likely to overfit (Fig. 5).

This is because the same hn is traced from different rays

in training, such that the underlying representation is well-

constrained. Hn and Hf are similar to the foreground

Ours without Hn Ours with Hn Ground truth

Figure 5. Our cone-traced near-field features successfully re-

construct the reflected spheres (2nd column) under novel views,

which are overfitted by the angular-only encoding (1st column).

Hash grid

Positional

Encoding

MLP

CubemapMLP

Tri-plane

MLP

Resolution:

Levels:

Features:

Hash table:

64 1

ReLU

[16, 2048]

16

2

524288

64 2

ReLU

256 8

Softplus

MLP

64 2

ReLU

512

9

16

Resolution:

Mip levels:

Features:

Resolution:

Mip levels:

Features:

64

6

16

Figure 6. Network architectures. N×M denotes an M -layer

MLP of width N .

and background colors in regular volume rendering, so Hf

can be naturally composited with Hn using the opacity

αn=1−∏

i e
−σn(x

′

i,λi)δi =
∑

i w
i
n as in Eq. (6).

4.3. Optimization

Figure 6 shows our network architectures. Stable geometry

optimization is essential for modeling specular objects, so

we use the positional-encoded MLP from VolSDF [55] to

output the SDF. To reduce computation cost, a hash grid

is used to encode other spatial features (cd,ks, ρ, f), and

all other MLPs are tiny. The representation is optimized

through the Charbonnier loss [1] between ground truth pixel

color Cgt and our rendering C in tone-mapped space:

L =
∑

x,ω

√

∥Γ(C(x,ω))−Cgt(x,ω)∥2
2
+ 0.001, (11)

where Γ is the tone-mapping function [40].

Occupancy-grid sampling. Eqs. (3) and (9) are acceler-

ated by an occupancy-grid estimator [24] to get rid of com-

putations in empty space. This is especially important for

the efficient near-field feature evaluation, since we trace a

reflected ray for each primary ray sample. The primal ray

rendering uses a fixed ray marching step of 0.005. Follow-

ing [9], we choose the cone tracing step proportional to its

footprint: max (0.5ri, 0.005), and query a mip-mapped oc-

cupancy grid for the correct occupancy information.

Regularization. Given the primary samples xi, Eikonal

loss [55] Leik is applied to regularize the SDF, and we im-

plicitly regularize σn to match σ by encouraging the render-

ing using σn at mip level 0 to be close to the ground truth:

Lσ=
∑

x,ω

∥Cσ(x,ω)−Cgt(x,ω)∥22, where

Cσ(x,ω) =
∑

i

w(σn(xi, 0))̊c(xi,ω),
(12)

□̊ denotes stop-gradient to prevent σn affecting appearance.

The total loss is L+ 0.1Leik + 0.01Lσ .

Implementation details. We implement our code using

PyTorch [41], NerfAcc [24], and CUDA. The optimiza-

tion takes 400k steps using the Adam optimizer [21] with

0.0005 learning rate and dynamic batch size [39] target-

ing for 32k primary point samples. We use the scheduler

from BakedSDF [15] to anneal β in Eq. (1) for more stable

convergence. Because the SDF uses a positional-encoded

MLP, each scene still requires 10∼18 hours to train on an

NVIDIA 3090 GPU with 15GB GPU memory usage.

5. Experiments

We evaluate our method on view synthesis of specular ob-

jects using synthetic and real scenes. The synthetic scenes

include the Shinny Blender dataset [48] and the Materials

scene from the NeRF Synthetic dataset [37], all rendered

without background; the real scenes come from NeRO [31]

which contain backgrounds and reflections of the capturer

in the images. The rendering quality is compared in terms

of PSNR, SSIM [52], LPIPS [61], and the inference speed

in FPS is recorded on an NVIDIA 3090 GPU.

Background and capturer. For real scenes, we use a sep-

arate Instant-NGP [39] with coordinate contraction [1] to

render backgrounds. Similarly to NeRO [31], the reflection

of the capturer is encoded by blending a capturer plane fea-

ture hc of opacity αc between Hf and Hn:

H = Hn + (1− αn)(αchc + (1− αc)Hf), where

αc,hc = MLP(mipmap(Tc(u), λc))
(13)

are decoded from a mip-mapped 2D feature grid Tc; u, λc

are the ray-plane intersection coordinate and the mip-level

derived from the intersection footprint. Jointly optimiz-

ing foreground and background networks can be unstable,

so we apply stabilization loss from NeRO [31] and mod-

ify the specular color computation for the first 200k steps:

hf ,hn,hc are sampled and decoded into colors first, then

the colors are blended to get cs. Compared to blending the

feature and decoding, we find the decoding-then-blending

strategy provides better geometry optimization.

5.1. View synthesis

We compare against NeRO [31], ENVIDR [26], and Ref-

NeRF [48] on synthetic scenes. All methods except for Ref-

NeRF use SDFs, and we evaluate NeRO after the BRDF

estimation as it shows better performance. Ideally, both

backgrounds and reflections from the capturer should be

Method Mat. Teapot Toaster Car Ball Coffee Helmet Mean

PSNR ↑
NeRO 24.85 40.29 27.31 26.98 31.50 33.76 29.59 30.61

ENVIDR 29.51 46.14 26.63 29.88 41.03 34.45 36.98 34.95

Ref-NeRF 35.41 47.90 25.70 30.82 47.46 34.21 29.68 35.88

NDE (ours) 31.53 49.12 30.32 30.39 44.66 36.57 37.77 37.19

SSIM ↑
NeRO 0.878 0.993 0.891 0.926 0.953 0.960 0.953 0.936

ENVIDR 0.971 0.999 0.955 0.972 0.997 0.984 0.993 0.982

Ref-NeRF 0.983 0.998 0.922 0.955 0.995 0.974 0.958 0.969

NDE (ours) 0.972 0.999 0.968 0.968 0.995 0.979 0.990 0.982

LPIPS ↓
NeRO 0.138 0.017 0.162 0.064 0.179 0.099 0.102 0.109

ENVIDR 0.026 0.003 0.097 0.031 0.020 0.044 0.022 0.035

Ref-NeRF 0.022 0.004 0.095 0.041 0.059 0.078 0.075 0.053

NDE (ours) 0.017 0.002 0.039 0.024 0.022 0.033 0.014 0.022

Table 1. Quantitative comparison on synthetic scenes showing

our encoding (NDE) is either the best or second best compared to

other methods for view synthesis of specular objects.

removed when evaluating renderings of specular objects,

which is difficult for the real scenes. Therefore, we only

qualitatively compare real scenes against NeRO with PSNR

computed on the foreground zoom-ins without the capturer.

Results. Overall, our method gives the best rendering

quality on synthetic scenes with quantitative results either

better or comparable with the baselines (Tab. 1). This

is because our NDE gives the most detailed modeling of

both far-field reflections and interreflections, which also

helps improve the geometry reconstruction (Fig. 7 bottom).

While ENVIDR’s SSIM is slightly better than ours in sev-

eral scenes, we not only achieve much better PSNRs (sur-

passing 2dB), but also higher LPIPS scores. The PSNR on

the Materials (Mat.) scene is worse than Ref-NeRF’s be-

cause the SDF is inefficient at modeling the concave geom-

etry of the sphere base. However, our directional MLP is

much smaller (Sec. 5.2), and we still achieve perceptually

better appearance as shown in the insets of Fig. 7. The qual-

itative comparison in Fig. 8 shows that NDE extends well

to real scenes, producing clearer specular reflections of the

complex real-world environments compared to NeRO.

Editability. The near- and far-field features provide a nat-

ural separation of different reflections, allowing us to ren-

der these effects separately by excluding Hf or Hn during

inference (Fig. 9). Because interreflections are spatially en-

coded in the near-field feature grid, an object and its first-

bounce reflections can be removed by masking out both

σ and σn from the corresponding regions (Fig. 10). This

does not work for multi-bounce reflections which are not

encoded on the deleted object.

5.2. Performance comparison

We compare the evaluation frames per second (FPS) on

an 800×800 resolution of the color network and its MLP

size (#Params.) with all baselines in Sec. 5.1 on synthetic

scenes. The color MLPs include the decoder of σn,hn, cs
for our model (Fig. 6), lighting MLPs for NeRO [31] and

ENVIDR [26] Ref-NeRF [48] NDE (ours) Ground truth ENVIDR Ref-NeRF NDE (ours) GT

R
en

d
er

in
g

R
en

d
er

in
g

/N
o

rm
al

Figure 7. Qualitative results for synthetic scenes show our NDE successfully models the fine details of reflections from both environment

lights (mirror sphere and car top) and other objects (glossy interreflections on spheres; zoom in to see the difference). Ref-NeRF tends to use

wrong geometry to fake interreflections (2nd column on bottom). In contrast, our encoding has sufficient capacity to model interreflections,

which enables more accurate normals (3rd column on bottom). Mean angular error of the normal is shown in the insets.

NeRO [31] NDE (ours) Ground truth

Figure 8. Qualitative comparison on real scenes. Our NDE gives better reconstruction of the interreflections (the bear’s plate and bottom

of the vase) and detailed highlights from the environment. Numbers in the insets are image PSNR values.

Far-field reflections Near-field reflections Combined

Far-field

Near-field

Figure 9. Reflection separation. We can visualize different reflec-

tion effects by feeding corresponding features into the network.

Figure 10. Editability of our encoding. Reflections from the

deleted spheres can be removed by deleting the volume of their

indirect features (bottom).

ENVIDR [26], and the directional MLP for Ref-NeRF [48].

The spatial-network evaluation is excluded to eliminate the

difference caused by different geometry representations,

network architectures, and sampling strategies. For each

method, we choose the rendering batch size that maximizes

its performance.

Results. As shown in the top half of Tab. 2, our NDE takes

a fraction of a second to evaluate, because it requires sub-

stantially smaller MLPs to infer color without hurting the

rendering. In contrast, other baselines need large MLPs to

maintain rendering quality, which prevents them to be visu-

alized in real-time.

Real-time application. It is possible to create a real-time

version of our model by converting the SDF into a mesh

through marching cubes [32] and baking cd,ks, ρ, f into

mesh vertices. The pixel color then can be computed us-

ing the rasterized vertex attributes and cs decoded from the

NDE, which takes only a single cubemap lookup and cone

tracing for each pixel. As a result, this process requires

about the same budget as evaluating a real-time NeRF

model [39, 45, 53]. We implement our real-time model

(NDE-RT) in WebGL and report the full rendering frame

rate (not just color evaluation) at the bottom of Tab. 2 with

a real-time baseline 3DGS [19]. 3DGS is faster as it uses

spherical harmonics for color without network evaluation,

Ground truth Our offline model Our real-time model

Figure 11. Error near object boundaries in our real-time model

is caused by the marching-cube extraction of a triangle mesh and

its subsequent rasterization (squared error maps at the bottom).

This error does not lead to significant qualitative differences (top).

Method FPS↑ #Params↓ PSNR↑ SSIM↑ LPIPS↓
NeRO 0.11 454k 30.61 0.936 0.109

ENVIDR 0.55 206k 34.95 0.982 0.035

Ref-NeRF 0.08 521k 35.88 0.969 0.053

NDE (ours) 3.03 75k 37.19 0.982 0.022

3DGS 235 - 30.30 0.949 0.076

NDE-RT (ours) 66 75k 35.48 0.976 0.027

Table 2. Performance comparison. Our NDE achieves high ren-

dering quality, and its use of small MLPs enables fast color evalu-

ation and real-time rendering. We report only the evaluation time

and parameter counts of color MLPs except for 3DGS (no color

MLPs) and our NDE-RT, for which we report the total rendering

time. All metrics are averaged over the synthetic scenes in Tab. 1.

which leads to poor specular appearance reconstruction. In-

stead, our NDE-RT shows rendering quality comparable to

other baselines while achieving frame rates above 60. The

loss in PSNR is mainly due to error around object edges

which is cause by the marching-cube mesh extraction and

subsequent rasterization (Fig. 11). This error does not sig-

nificantly affect the visual quality and can be resolved by

fine-tuning the mesh [8, 40].

5.3. Ablation study

Different directional encodings. In Fig. 12 we com-

pare different directional encodings on the Materials scene.

IDE [48] (analytical) with our tiny MLP yields blurry re-

flections. Interreflections cannot be reconstructed using

only the far-field feature, and if we volume-render rather

than cone-trace the near-field feature, mirror interreflections

can be recovered but reflections on rough surfaces look too

sharp. It is therefore necessary to use both the cubemap-

based far-field feature and the cone-traced near-field feature

to get the best specular appearance (Tab. 3).

Network architecture. Table 4 shows the performance

trade-off between different network architectures of our

model on synthetic scenes. Using a smaller MLP width for

Ground truth

Analytical Hf Cubemap Hf

Volume-rendered Hn Cone-traced Hn

Figure 12. Qualitative ablation of NDE components. Details

from the environment light fail to be reconstructed with an ana-

lytical encoding (mirror sphere on 2nd row). It is also necessary

to use the cone-traced near-field feature, otherwise rough surfaces

are rendered incorrectly (grey sphere on 3rd row).

Far-field feature Near-field feature PSNR↑ SSIM↑ LPIPS↓
Analytical - 28.54 0.944 0.029

Cubemap - 30.27 0.962 0.022

Cubemap Volume-rendered 29.31 0.951 0.034

Cubemap Cone-traced 31.53 0.972 0.017

Table 3. Ablation on directional encodings shows each compo-

nent of NDE is needed for the best rendering quality. The compar-

ison is made on the Materials scene.

Model MLP width PSNR↑ SSIM↑ LPIPS↓ FPS↑

Our offline

64 37.19 0.982 0.022 <1

32 36.69 0.979 0.026 <1

16 36.23 0.977 0.028 <1

Our real-time

64 35.48 0.976 0.027 66

32 33.97 0.971 0.034 211

16 33.71 0.969 0.036 331

Table 4. Ablation on our network architecture. Using a smaller

MLP width introduces a minor loss in rendering fidelity but a no-

ticeable real-time performance boost.

the decoder of σn,hn, cs has only a slight negative impact

on the rendering quality but significantly improves real-time

performance. The rendering quality reduction of the real-

time model is mainly caused by the error near object edges

as discussed in Sec. 5.2.

Spatial mip-mapping strategies. Besides mip-mapped

tri-plane [5, 16], our architecture can also work with a mip-

mapped hash grid [39] for the near-field feature encoding.

Similar to [2, 25], the hash-grid mip-mapping is imple-

mented by gradually masking out fine-resolution features as

the mip level increases. This results in limited model capac-

ity for rough surfaces where most of the features are masked

Mat. Teapot Toaster Car Ball Coffee Helmet Mean

PSNR ↑
Hash grid 30.89 49.00 29.46 30.16 43.48 34.98 37.67 36.52

Tri-plane 31.53 49.12 30.32 30.39 44.66 36.57 37.77 37.19

SSIM ↑
Hash grid 0.968 0.999 0.953 0.967 0.990 0.974 0.990 0.977

Tri-plane 0.972 0.999 0.968 0.968 0.995 0.979 0.990 0.982

LPIPS ↓
Hash grid 0.019 0.002 0.058 0.025 0.031 0.043 0.014 0.027

Tri-plane 0.017 0.002 0.039 0.024 0.022 0.033 0.014 0.022

Table 5. Ablation on mip-mapping strategies suggests that the

mip-mapped tri-plane represents averaged near-field features and

density better than the mip-mapped hash grid.

ENVIDR [26] NDE (hash grid) NDE (MLP) Ground truth

Figure 13. Unstable geometry optimization of specular objects

prevents us from encoding the SDF using a hash grid [39] as it

gives incorrect surface normals (middle left). This is also the case

for other hash-grid-based methods (left).

out, such that a mip-mapped hash grid produces slightly

worse rendering than the tri-plane encoding (Tab. 5).

Limitations. Like previous works [26, 31, 48], NDE is

sensitive to the quality of the surface normal. This prevents

us from using more efficient geometry representations such

as a hash grid, which tends to produce corrupted geometry

(Fig. 13). As a result, we use positional-encoded MLPs to

model the SDF, which leads to long training times and is

difficult for modeling transparent objects. Meanwhile, the

editibility of our method is limited.

6. Conclusion

We have adapted feature-based NeRF encodings to the di-

rectional domain and introduced a novel spatio-spatial pa-

rameterization of view-dependent appearance. These im-

provements allow for efficient modeling of complex re-

flections for novel-view synthesis and could benefit other

applications that model spatially varying directional sig-

nals, such as neural materials [13, 23, 58] and radiance

caching [38].

Acknowledgements. This work was supported in part

by NSF grants 2110409, 2100237, 2120019, ONR grant

N00014-23-1-2526, gifts from Adobe, Google, Qualcomm,

Rembrand, a Sony Research Award, as well as the Ronald

L. Graham Chair and the UC San Diego Center for Visual

Computing. Additionally, we thank Jingshen Zhu for in-

sightful discussions.

References

[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded

anti-aliased neural radiance fields. In CVPR, 2022. 2, 4, 5

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.

Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-

based neural radiance fields. In ICCV, 2023. 2, 8

[3] Yash Belhe, Bing Xu, Sai Praveen Bangaru, Ravi Ra-

mamoorthi, and Tzu-Mao Li. Importance sampling brdf

derivatives. In ACM TOG, 2024. 2

[4] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,

and Gordon Wetzstein. Pi-gan: Periodic implicit genera-

tive adversarial networks for 3d-aware image synthesis. In

CVPR, 2021. 2

[5] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,

Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J

Guibas, Jonathan Tremblay, Sameh Khamis, et al. Effi-

cient geometry-aware 3d generative adversarial networks. In

CVPR, 2022. 1, 2, 4, 8

[6] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,

Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-

izable radiance field reconstruction from multi-view stereo.

In ICCV, 2021. 2

[7] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and

Hao Su. Tensorf: Tensorial radiance fields. In ECCV, 2022.

1, 2, 3

[8] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-

drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-

terization pipeline for efficient neural field rendering on mo-

bile architectures. In CVPR, 2023. 2, 7

[9] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green,

and Elmar Eisemann. Interactive indirect illumination using

voxel cone tracing. In Computer Graphics Forum, 2011. 4

[10] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-

Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and

Richard Tucker. Deepview: View synthesis with learned gra-

dient descent. In CVPR, 2019. 2

[11] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk

Warburg, Benjamin Recht, and Angjoo Kanazawa. K-planes:

Explicit radiance fields in space, time, and appearance. In

CVPR, 2023. 2

[12] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie

Shotton, and Julien Valentin. Fastnerf: High-fidelity neural

rendering at 200fps. In ICCV, 2021. 2

[13] Alban Gauthier, Robin Faury, Jérémy Levallois, Théo

Thonat, Jean-Marc Thiery, and Tamy Boubekeur. Mipnet:

Neural normal-to-anisotropic-roughness mip mapping. In

ACM TOG, 2022. 8

[14] Jiatao Gu, Alex Trevithick, Kai-En Lin, Joshua M Susskind,

Christian Theobalt, Lingjie Liu, and Ravi Ramamoorthi.

Nerfdiff: Single-image view synthesis with nerf-guided dis-

tillation from 3d-aware diffusion. In ICML, 2023. 2

[15] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,

Jonathan T Barron, and Paul Debevec. Baking neural ra-

diance fields for real-time view synthesis. In ICCV, 2021. 2,

5

[16] Wenbo Hu, Yuling Wang, Lin Ma, Bangbang Yang, Lin Gao,

Xiao Liu, and Yuewen Ma. Tri-miprf: Tri-mip representation

for efficient anti-aliasing neural radiance fields. In ICCV,

2023. 2, 4, 8

[17] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ra-

mamoorthi. Learning-based view synthesis for light field

cameras. In ACM TOG, 2016. 2

[18] Brian Karis. Real shading in unreal engine 4. In SIGGRAPH

2013 Course: Physically Based Shading in Theory and Prac-

tice, 2013. 3

[19] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,

and George Drettakis. 3d gaussian splatting for real-time

radiance field rendering. In ACM TOG, 2023. 2, 7

[20] Leonid Keselman and Martial Hebert. Flexible techniques

for differentiable rendering with 3d gaussians. arXiv preprint

arXiv:2308.14737, 2023. 2

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[22] Jonas Kulhanek and Torsten Sattler. Tetra-nerf: Represent-

ing neural radiance fields using tetrahedra. In ICCV, 2023.

2

[23] Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš

Hašan, and Ravi Ramamoorthi. Neumip: Multi-resolution

neural materials. In ACM TOG, 2021. 3, 8

[24] Ruilong Li, Matthew Tancik, and Angjoo Kanazawa. Ner-

facc: A general nerf acceleration toolbox. arXiv preprint

arXiv:2210.04847, 2022. 3, 4, 5

[25] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Tay-

lor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan Lin.

Neuralangelo: High-fidelity neural surface reconstruction. In

CVPR, 2023. 2, 8

[26] Ruofan Liang, Hui-Hsia Chen, Chunlin Li, Fan Chen, Sel-

vakumar Panneer, and Nandita Vijaykumar. Envidr: Implicit

differentiable renderer with neural environment lighting. In

ICCV, 2023. 1, 2, 5, 6, 7, 8

[27] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,

Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler,

Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution

text-to-3d content creation. In CVPR, 2023. 2

[28] Kai-En Lin, Yen-Chen Lin, Wei-Sheng Lai, Tsung-Yi Lin,

Yi-Chang Shih, and Ravi Ramamoorthi. Vision transformer

for nerf-based view synthesis from a single input image. In

WACV, 2023. 2

[29] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and

Christian Theobalt. Neural sparse voxel fields. In NeurIPS,

2020. 1, 2, 3

[30] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Zexiang

Xu, Hao Su, et al. One-2-3-45: Any single image to 3d mesh

in 45 seconds without per-shape optimization. In NeurIPS,

2023. 2

[31] Yuan Liu, Peng Wang, Cheng Lin, Xiaoxiao Long, Jiepeng

Wang, Lingjie Liu, Taku Komura, and Wenping Wang. Nero:

Neural geometry and brdf reconstruction of reflective objects

from multiview images. In ACM TOG, 2023. 2, 5, 6, 8

[32] William E Lorensen and Harvey E Cline. Marching cubes:

A high resolution 3d surface construction algorithm. In SIG-

GRAPH, 1987. 7

[33] Alexander Mai, Dor Verbin, Falko Kuester, and Sara

Fridovich-Keil. Neural microfacet fields for inverse render-

ing. In ICCV, 2023. 2

[34] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,

Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-

worth. Nerf in the wild: Neural radiance fields for uncon-

strained photo collections. In CVPR, 2021. 2

[35] Nelson Max. Optical models for direct volume rendering.

IEEE Transactions on Visualization and Computer Graphics,

1(2):99–108, 1995. 2

[36] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,

Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and

Abhishek Kar. Local light field fusion: Practical view syn-

thesis with prescriptive sampling guidelines. In ACM TOG,

2019. 2

[37] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. In ECCV, 2020. 1, 2, 3, 5

[38] Thomas Müller, Fabrice Rousselle, Jan Nov’ak, and Alexan-

der Keller. Real-time neural radiance caching for path trac-

ing. In ACM TOG, 2021. 8

[39] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-

olution hash encoding. In SIGGRAPH, 2022. 1, 2, 3, 5, 7,

8

[40] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao,

Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fi-

dler. Extracting triangular 3d models, materials, and lighting

from images. In CVPR, 2022. 2, 4, 7

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

NeurIPS, 2019. 5

[42] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-

hall. Dreamfusion: Text-to-3d using 2d diffusion. In ICLR,

2023. 2

[43] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas

Geiger. Kilonerf: Speeding up neural radiance fields with

thousands of tiny mlps. In ICCV, 2021. 2

[44] Radu Alexandru Rosu and Sven Behnke. Permutosdf: Fast

multi-view reconstruction with implicit surfaces using per-

mutohedral lattices. In CVPR, 2023. 2

[45] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel

grid optimization: Super-fast convergence for radiance fields

reconstruction. In CVPR, 2022. 1, 2, 3, 7

[46] Alex Trevithick and Bo Yang. Grf: Learning a general ra-

diance field for 3d representation and rendering. In ICCV,

2021. 2

[47] Alex Trevithick, Matthew Chan, Michael Stengel, Eric Chan,

Chao Liu, Zhiding Yu, Sameh Khamis, Manmohan Chan-

draker, Ravi Ramamoorthi, and Koki Nagano. Real-time

radiance fields for single-image portrait view synthesis. In

ACM TOG, 2023. 2

[48] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,

Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: Struc-

tured view-dependent appearance for neural radiance fields.

In CVPR, 2022. 1, 2, 3, 4, 5, 6, 7, 8

[49] Bruce Walter, Stephen R Marschner, Hongsong Li, and Ken-

neth E Torrance. Microfacet models for refraction through

rough surfaces. In EGSR, 2007. 3

[50] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku

Komura, and Wenping Wang. Neus: Learning neural implicit

surfaces by volume rendering for multi-view reconstruction.

In NeurIPS, 2021. 2

[51] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P

Srinivasan, Howard Zhou, Jonathan T Barron, Ricardo

Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibr-

net: Learning multi-view image-based rendering. In CVPR,

2021. 2

[52] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-

moncelli. Image quality assessment: from error visibility to

structural similarity. In IEEE transactions on image process-

ing, 2004. 5

[53] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yu-Xiong Wang,

and David Forsyth. Diver: Real-time and accurate neural ra-

diance fields with deterministic integration for volume ren-

dering. In CVPR, 2022. 1, 2, 3, 7

[54] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu,

Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf: Point-

based neural radiance fields. In CVPR, 2022. 2

[55] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-

ume rendering of neural implicit surfaces. In NeuRIPS, 2021.

2, 4

[56] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,

Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron,

and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-

time view synthesis. In SIGGRAPH, 2023. 2

[57] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and

Angjoo Kanazawa. Plenoctrees for real-time rendering of

neural radiance fields. In ICCV, 2021. 2

[58] Tizian Zeltner, Fabrice Rousselle, Andrea Weidlich, Petrik

Clarberg, Jan Novák, Benedikt Bitterli, Alex Evans,

Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn.

Real-time neural appearance models. arXiv preprint

arXiv:2305.02678, 2023. 3, 8

[59] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen

Koltun. Nerf++: Analyzing and improving neural radiance

fields. arXiv preprint arXiv:2010.07492, 2020. 2

[60] Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and

Noah Snavely. Physg: Inverse rendering with spherical gaus-

sians for physics-based material editing and relighting. In

CVPR, 2021. 2

[61] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In CVPR, 2018. 5

[62] Xiaoshuai Zhang, Abhijit Kundu, Thomas Funkhouser,

Leonidas Guibas, Hao Su, and Kyle Genova. Nerflets: Local

radiance fields for efficient structure-aware 3d scene repre-

sentation from 2d supervision. In CVPR, 2023. 2

	. Introduction
	. Related work
	. Preliminaries
	. Neural directional encoding
	. Far-field features
	. Near-field features
	. Optimization

	. Experiments
	. View synthesis
	. Performance comparison
	. Ablation study

	. Conclusion

