
Supplementary Material: Neural Directional Encoding

for Efficient and Accurate View-Dependent Appearance Modeling

A. Additional Implementation Details

A.1. Cone tracing footprint

In Sec. 4.2, we choose the cone to cover the (cosine
weighted) GGX distribution [7] centered in the reflected di-
rection ωr. Assuming ωr=(0, 0, 1), the distribution D with
roughness ρ in spherical coordinates (θ, φ) can be written
as:

D(θ, φ) =
α2 max(cos θ, 0)

π(cos2 θ(α2 − 1) + 1)2
, α = ρ2. (1)

If we want the cone to cover a certain fraction T of the dis-
tribution, the polar angle θ should satisfy:

T =

∫

2π

0

∫ θ

0

D(θ′, φ) sin θ′dθ′dφ

=
1− cos2 θ
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⇒ cos θ =

√
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,

(2)

which gives the base cone radius r0:

r0 = cot θ =

√
1− cos2 θ

cos θ
=

√

T

1− T
ρ2. (3)

We found T = 75% in practice gives good results, which
suggests r0 =

√
3ρ2. Therefore, the footprint at x′

i from x

is ri=
√
3ρ2∥x− x

′
i∥2.

A.2. Realtime application

We use a two-pass deferred shading in our real-time model.
The first pass rasterizes the world-space position x, nor-
mal n, diffuse color cd, specular tint ks, spatial feature
f , and roughness ρ into the G-buffer. In the second pass,
we then calculate the NDE H, including a cubemap lookup
for far-field feature Hf and the cone tracing of near-field
feature Hn, and decode it to get the specular color cs.
The MLP evaluations are executed sequentially inside the
pixel shader, and we implement the early ray termination
trick [3, 8] to stop the cone tracing if the accumulated trans-
mittance is below 0.01. Because small decoder MLPs tend
to provide unstable geometry optimization, we use the fixed
SDF network weight from our NDE trained with 64 MLP
width when training other variants that use smaller decoder
MLPs (Sec. 5.3).

ENVIDR Ref-NeRF NDE (ours)

PSNR↑ 22.67 23.46 23.63

Table 1. PSNR on the Ref-NeRF Garden Spheres scene.

ENVIDR NDE (ours) Ground truth

24.38dB

Figure 1. Qualitative comparison on the Garden Spheres scene

of Ref-NeRF real dataset. Numbers shows the image PSNR;
zoom in to see the difference.

A.3. Spatial mipmapping strategies

We introduce mip-mapping strategies of spatial encodings
in Sec. 5.3 using either a triplane [2, 4] or a hash grid [5].
Let Txy,Tyz,Tzx denote the three 2D planes of the tri-
plane T. A mip-mapped query at location x= (x, y, z) of
mip level λ is given by:

mipmap(T(x), λ) =
⊕

u∈U

lerp(T⌊λ⌋
u

(u),T⌈λ⌉
u

(u), λ−⌊λ⌋),

U={(x, y),(y, z),(z, x)},Tk
u
=downsample(Tu, k),

(4)

where
⊕

is the concatenation operation. For a hash grid
feature F with lth level feature Fl (beginning from the finest
resolution), its mip-mapping is given by:

mipmap(F(x), λ) =
⊕

l

clamp(l+1−λ, 0, 1)Fl(x). (5)

B. Additional Results

We provide the results on the Garden Spheres scene of Ref-
NeRF real dataset [6] in Tab. 1 and Fig. 1. It can be seen that
our method is able to recover more interreflection details in
real-world compared to other baselines. In Tab. 2, we addi-
tionally show the FLIP [1] metric comparison on synthetic
scenes.
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Method Mat. Teapot Toaster Car Ball Coffee Helmet Mean

NeRO 0.082 0.012 0.097 0.049 0.058 0.039 0.083 0.060
ENVIDR 0.062 0.030 0.098 0.056 0.037 0.046 0.049 0.054
Ref-NeRF 0.023 0.011 0.108 0.071 0.038 0.030 0.072 0.050

NDE (ours) 0.039 0.007 0.065 0.038 0.027 0.035 0.035 0.035

Table 2. FLIP metric on synthetic scenes.

NeRO ENVIDR Ref-NeRF NDE NDE-RT

PSNR ↑ 28.75 31.29 28.18 34.08 32.97

SSIM ↑ 0.956 0.969 0.946 0.985 0.984

LPIPS ↓ 0.046 0.022 0.030 0.008 0.010

Table 3. Quantitative results on the teaser scene.

Method Mat. Teapot Toaster Car Ball Coffee Helmet Mean

Hashgrid 30.12 46.46 25.83 29.94 36.41 33.25 34.08 33.73
Pos. enc. 31.53 49.12 30.32 30.39 44.66 36.57 37.77 37.19

Table 4. Comparison of geometry encoding on synthetic scenes

in PSNR. “Pos. enc.” denotes positional encoding.

Width Mat. Teapot Toaster Car Ball Coffee Helmet Mean

PSNR ↑
64 31.53 49.12 30.32 30.39 44.66 36.57 37.77 37.19
32 30.89 48.88 29.33 29.51 44.34 36.24 37.63 36.69
16 30.59 48.56 29.09 29.24 43.61 36.07 36.47 36.23

SSIM ↑
64 0.972 0.999 0.968 0.968 0.995 0.979 0.990 0.982
32 0.968 0.999 0.961 0.962 0.994 0.977 0.989 0.979
16 0.965 0.998 0.959 0.960 0.994 0.977 0.986 0.977

LPIPS ↓
64 0.017 0.002 0.039 0.024 0.022 0.033 0.014 0.022
32 0.021 0.002 0.057 0.032 0.021 0.033 0.017 0.026
16 0.023 0.002 0.058 0.034 0.021 0.034 0.022 0.028

Table 5. Per-scene results of our offline models on synthetic

scenes. The first column suggests the decoder MLP width.

C. Experiment Details

We provide the quantitative results on the teaser scene
(Fig. 1 of the main paper) compared to the baselines in
Tab. 3 and the comparison of different SDF encodings
(Fig. 12 of the main paper) in Appendix B. Table 5 and
6 show the per-scene quantitative results of our real-time
and offline model with different MLP width (Width) on the
synthetic dataset. In Fig. 2, we show the per-scene render-
ing results of both our offline (NDE) and real-time (NDE-
RT) model on the synthetic dataset together with the recon-
structed surface normals. The normals are masked by the
foreground mask to get rid of floaters with the background
color.
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Figure 2. Qualitative results on each synthetic scene for our offline (NDE) and real-time (NDE-RT) methods.
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